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Abstract: After discussing basics of Sheaf theory and proving the de Rham theorem, we introduce
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2.2.1 Poincaré Lemmata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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Introduction

These notes were written during a reading course the author took at ETH Zürich in fall 2018. The aim
was to introduce himself to currents and their applications in algebraic geometry, complex geometry, and
complex analysis with primary use of Harris and Griffiths’ book “Principles of Algebraic Geometry”, [3].
The notes intend to rephrase some of the results and fill in some of the gaps left out in various proofs. The
first chapter is concerned with Sheaf theory with the goal of proving the de Rham theorem as it is needed
in the next chapter. The latter introduces currents, establishes their representation as differential forms
with distributions as coefficients, and deduces the regularity of the ∂̄-operator for currents. Next, their
associated cohomology is constructed and proved to be isomorphic to the Dolbeault cohomology. Along
the way, the Bochner-Martinelli kernel will be discussed. The second chapter continues with a survey of
exactness results about positive currents. More precisely, we first prove then ∂∂̄-Poincaré lemma, then
the Poincaré Lelong equation, and finally the Lelong number will be constructed. The chapter is finished
with an application to the intersection number of analytic subvarieties. The last third of these notes aims
at proving the Proper Mapping Theorem. To this end, a brief discussion of Divisors and Line Bundles is
included, as well as the Levi Extension Theorem.

The first chapter is based on [3, p. 34ff] and [4, p. 60ff] with some additional inspiration from [6,
p. 294ff]. The second one closely follows [3, p. 364ff]. An additional reference for some calculus on
complex manifolds is [2, p. 101ff]. The section about the Bochner-Martinelli kernel is based on [5, p. 57ff].
The third chapter exclusively uses [3, p. 128ff,395ff].
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1 Sheaf Theory

1.1 Basic Concepts

Let X be a topological space. We define a category T (X) as follows: the objects of T (X) are the open
subsets of X; the morphism sets only contain the inclusion maps, i.e.

Hom(U, V ) =

{
∅, if U 6⊂ V,
{ιU,V }, if U ⊂ V.

A presheaf F over X is defined as a contravariant functor from T (X) to the category of abelian groups.
Written out, this means that a preasheaf F over X is a collection of abelian groups F(U), one for
each open subset U ⊂ X, together with a collection of group homomorphisms rV,U : F(V ) → F(U),
one for each pair of inclusions U ⊂ V , that satisfy rU,U = idF(U) and rW,U = rV,U ◦ rW,V , whenever
U ⊂ V ⊂ W . We call elements in F(U) sections over U and the homomorphisms rV,U restriction maps.
Given σ ∈ F(V ), we will also use the notation σ|U to denote rV,U (σ).

A sheaf over X is defined to be a presheaf F over X with the following additional structure: if a
section σ ∈ F(

⋃
i Ui) satisfies σ|Ui = 0 for all i, then we require σ = 0 in F(

⋃
i Ui); moreover, given

sections σi ∈ F(Ui) with σi|Ui∩Uj = σj |Ui∩Uj for all i and j, there must exist a section ρ ∈ F(
⋃
i Ui) with

ρ|Ui = σi for all i. Note that ρ is unique by the first requirement.
A presheaf (sheaf) F over X is a subpresheaf (subsheaf ) of another presheaf (sheaf) G over X if F(U)

is a subgroup of G(U) for every open set U ⊂ X, and if the maps rFV,U are simply the maps rGV,U restricted
to F(V ).

A morphism (or map) bewteen two presheaves over the same space X simply is a natural transforma-
tion in the categorial sense. In other words, a morphism α : F → G is a collection of group homomorphisms
αU : F(U) → G(U) such that rGV,U ◦ αV = αU ◦ rFV,U , for all U ⊂ V ⊂ X. If F and G are two sheaves
over X, then a morphism of sheaves is a morphism of the underlying presheaf structure. Naturally,
isomorphisms between two presheaves (sheaves) over X are natural isomorphisms in the categorial sense.

Note that the commutativty condition in the definition of a morphism α : F → G immediately implies
that the maps rFV,U restrict to well-defined maps ker(αV ) → ker(αU ). Thus, there is a well-defined
presheaf ker(α). The same argument gives us presheaves coker(α) and im(α). If α is a morphism of
sheaves, then ker(α) actually is a sheaf itself.

Lemma 1.1. Given a morphism α : F → G of sheaves over a topological space X, ker(α) is a sheaf.

Proof. We only need to check that ker(α) satisfies the additional structure of a sheaf over a presheaf.
Suppose V =

⋃
i Ui. The first property is clear, because F is a sheaf, and if σ is zero in ker(α)(V ), then

it is also zero in F(V ) and, hence, each σ|Ui is zero. Now suppose we are given sections σi ∈ ker(α)(Ui)
with σi|Ui∩Uj = σj |Ui∩Uj . Then there is a section ρ ∈ F(V ) with ρ|Ui = σi. Further, since

rGV,Ui ◦ αV (ρ) = αUi ◦ rFV,Ui(ρ) = αUi(σi) = 0,

the sheaf property of G implies αV (ρ) = 0, proving that ρ is not just an element of F(V ), but of
ker(α)(V ).

However, coker(α) and im(α) are not necessarily sheaves. We refer to the next section for an example
of this. We would like to circumvent this inconveniance and somehow turn coker(α) and im(α) into
sheaves. To this end, we need to introduce a new object. Fix a point p ∈ X and denote by Ip the set of
all open sets containing p. We can turn Ip into a directed set by specifying U ≥ V if U ⊂ V . Now let
F be a presheaf over X. By the properties of the restriction maps, (F(V ), rV,U ), U, V ∈ Ip, is a directed
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1.1 Basic Concepts

system over Ip. As such, we can take the direct limit to obtain the so-called stalk of F at p,

Fp = lim
−→
F(U) =

⊔
U∈Ip

F(U)/ ∼ .

Thus, the stalk contains equivlance classes [σ], σ ∈ F(U), where σ ∈ F(U) and τ ∈ F(V ) lie in the same
equivalence class if there is an open set p ∈ W ⊂ U ∩ V such that σ|W = τ |W . The stalk can be of
interest in its own right, but for now we merely use it for further constructions. Given an open subset
U ⊂ X, set

F∗(U) =

s : U →
⊔
p∈U
Fp

∣∣∣∣∣ (1) ∀p ∈ U : s(p) ∈ Fp,
(2) ∀p ∈ U ∃p ∈ V ⊂ U ∃τ ∈ F(V ) ∀q ∈ V : s(q) = [τ ]

 .

Lemma 1.2. F∗ together with the group operation s ◦ t defined pointwise by s ◦ t(p) = [s(p) ◦F(U) t(p)]
and the obvious restriction maps form a sheaf over X. Moreover, there exists a morphism θ : F → F∗
such that for all sheaves G over X and for all morphisms α : F → G there exists a unique morphism
α∗ : F∗ → G with α = α∗ ◦ θ.

Proof. First note that the obvious restriction maps are well-defined exactly by property (1). Hence, F∗
certainly is a presheaf. The sheaf conditions follow just as quickly: If the restriction of s ∈ F∗(

⋃
i Ui)

to Ui is zero, then, s(p) = s|Ui(p) = 0 for any p ∈ Ui. This holds for all i so that s = 0 in F∗(
⋃
i Ui).

Lastly, if we are given si ∈ F∗(Ui) that agree on each intersection, then we construct the needed ρ in the
obvious way. Next, define the morphism θ to be “the constant map”,

θU : F(U)→ F∗(U), θU (σ) = (p 7→ [σ]).

It remains to prove the existence of the morphisms α∗. Let α : F → G, U ⊂ X, and s ∈ F∗(U) be given.
By the second property in F∗, for every point p ∈ U there is a neighbourhood Vp ⊂ U and an element
τp ∈ F(Vp) with s|Vp = θVp(τp). We know that

θVp∩Vq

(
τp
∣∣
Vp∩Vq

− τq
∣∣
Vp∩Vq

)
=
(
s|Vp

) ∣∣
Vp∩Vq

−
(
s|Vq

) ∣∣
Vp∩Vq

= 0.

This means that τp − τq is zero in a small neighbourhood Wr of any point r in Vp ∩ Vq. In particular, for
any point r in Vp ∩ Vq we get

αVp(τp)
∣∣
Wr
− αVq (τq)

∣∣
Wr

= 0.

By the sheaf property of G, αVp(τp) and αVq (τq) agree on Vp∩Vq. Using the sheaf property of G again, we
conclude that there is a section ρ ∈ G(U) that agrees with αVp(τp) on Vp. Now we set α∗U (s) = ρ. This is

well-defined because for a different choice of neighborhoods Ṽp and sections τ̃p, we still have τp = τ̃p on
a small neighborhood of p and, hence, ρ = ρ̃ on this neighborhood. By the sheaf property of G, we get
ρ = ρ̃. This α∗ is a morphism of sheaves since

α∗V (s)
∣∣
U

= ρ
∣∣
U

= α∗U (s|U )

for any pair U ⊂ V . Clearly, we have α∗U ◦ θU (σ) = αU (σ) for any section σ ∈ F(U), since in this case
we simply take τp = σ|Vp . To prove uniqueness, suppose there was a another morphism β : F∗ → G with
α = β ◦ θ. Fix any open set U ⊂ X and a section s ∈ F∗(U). Any point in U has a small neighborhood
V in which s|V ≡ [τ ] for some τ ∈ F(V ). Then

α∗U (s)
∣∣
V

= α∗V ◦ θV (τ) = αV (τ) = βV ◦ θV (τ) = βU (s)
∣∣
V

and, hence, α∗U (s) = βU (s) by the sheaf property of G.
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1.1 Basic Concepts

Note that the lemma describes a universal property for (F∗, θ). Thus, as a formal consequence, F∗
is unique up to unique isomorphisms. We call F∗ the sheaf associated to the presheaf F . Property (2)
in the definition of F∗(U) immediately implies that the stalk of F∗ at any point p ∈ X is exactly the
stalk of F at p. This observation together with the next proposition below prove that if F was a sheaf
to begin with, then F∗ is isomorphic to F via θ. To make sense of the statement of the next proposition,
observe the following: Let α : F → G be a morphism of sheaves over X. The fact that the morphism
commutes with the restriction maps, by definition, implies that the morphism induces well-defined group
homomorphisms αp : Fp → Gp on the stalks by [σ] 7→ [α|U (σ)].

Proposition 1.3. α : F → G is an isomorphism of sheaves over X if and only if for every p ∈ X the
induced map αp : Fp → Gp is a group isomorphism.

Proof. If α is an isomorphism, then the induced map on the stalks (α−1)p clearly is an inverse map for αp.
Now assume that each map αp is an isomorphism. For each U ⊂ X, we will show that αU : F(U)→ G(U)
is a group isomorphism. Then the morphism β : G → F defined by βU = (αU )−1 is an inverse of α as
morphisms of sheaves.

For injectivity, suppose αU (σ) = 0, where σ ∈ F(U). Then we have αp([σ]p) = 0 in Gp for every
p ∈ U . By hypothesis, each αp is injective so that [σ]p is zero in Fp for all points p ∈ U . By definition,
this means that σ restricted to a small neighborhood of p ∈ U is identically zero. Since this holds for all
p, the glueing property of the sheaf F asserts that σ = 0 in F(U).

For surjectivity, let τ ∈ G(U) be given. By assumption, [τ ]p ∈ Gp has an inverse image Sp ∈ Fp under
αp, for every p ∈ U . Write each Sp as the equivalence class of some section σp ∈ F(Vp), where Vp is
some small neigbourhood of p. Then, by construction, αVp(σp) and τ agree on a (possibly shrunken)
neighborhood Vp of p. For two different points p and q in U , we have

αVp(σp)
∣∣∣
Vp∩Vq

= τ
∣∣∣
Vp∩Vq

= αVq (σq)
∣∣∣
Vp∩Vq

.

By injectivity of αVp∩Vq proved in the first half, σp and σq agree on Vp ∩ Vq. By the sheaf property of F ,
we can glue all the sections σp to some σ ∈ F(U). This section satisfies αU (σ)|Vp = τ |Vp so that, by the
sheaf property of G, the sections αU (σ) and τ agree on all of U .

Having defined the sheaf associated to a presheaf, we can now speak of the cokernel and the image of
a morphism α : F → G. To avoid confusion, from now on, we will denote the actual presheaf cokernel and
image by p-coker(α) and p-im(α), respectively, and write coker(α) and im(α) for the sheaves associated
to these presheaves. Furthermore, we can also define the quotient sheaf F/F ′ of F by a subsheaf F ′ as
the sheaf associated to the obvious presheaf F(U)/F ′(U), U ⊂ X.

We say that a morphism α : F → G of sheaves over X is injective if ker(α) = 0, i.e. if, for every open
set U ⊂ X, αU : F(U) → G(U) is injective. Observe that the morphism α∗ : F∗ → G from lemma 1.2
is injective whenever α is. In particular, if we take our morphism to be the inclusion of p-im(α) into G,
then we get a unique injective map from im(α) into G. Hence, we can consider im(α) as a subsheaf of G
and it makes sense to call α surjective if im(α) = G. Likewise, we can view coker(α) as a subsheaf of F .

Let us point out an important remark. Strictly speaking, we defined the notions of injectivity and
surjectivity only for morphisms between sheaves, not for presheaves. While this would be no problem
for injectivity, there is an ambiguity for the definition of surjectivtiy for presheaves, because requiring
im(α) = G is something different than requiring p-im(α) = G. For the sake of simplicity, we mean sheaves
whenever we talk about surjective morphisms. This argument also shows that surjectivity of a morphism
α between sheaves is not equivalent to surjectivity of each map αU .

Next, we would like to show that the usual equivalence between being bijective and being an isomor-
phism holds. The way we set up the definitions, this is not a trivial statement. Begin by observing that
the stalk of ker(α) at a point p ∈ X is exactly the kernel of the group homomorphism αp induced on the
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stalks. The same goes for the image as

(im(α))p = (p-im(α))∗p = (p-im(α))p = im(αp).

The following lemma is an application of proposition 1.3.

Lemma 1.4. A morphism α : F → G of sheaves over X is injective (surjective) if and only if for every
p ∈ X the induced map αp : Fp → Gp on the stalk is injective (surjective).

Proof. Suppose α is injective and αp([σ]) = αp([τ ]), σ ∈ F(U) and τ ∈ F(V ). The latter is equivalent
to the existence of a smaller set W ⊂ U ∩ V with αU (σ)|W = αV (τ)|W . By injectivitiy of α, we get
σ|W = τ |W and, hence, [σ] = [τ ] in Fp. Conversely, if for every p the map αp : Fp → Gp is injective, then
the maps αp : Fp → im(αp) = (im(α))p are isomorphisms. By proposition 1.3, α viewed as a morphism
F → im(α) is an isomorphism and, in particular, each αU is injective. For surjectivity, let i∗ denote the
injective morphism im(α)→ G, which we used to identify im(α) as a subsheaf of G. α is surjective if and
only if every i∗U : im(α)(U) → G(U) is surjective. As we know that i∗ is injective, this is the case if and
only if i∗ is an isomorphism. By proposition 1.3, i∗ is an isomorphism if and only if for every p ∈ X the
map i∗p : im(αp)→ Gp is one. As we know from the first half of the proof that the maps i∗p are injective,
they are isomorphisms if and only if they are surjective. This, in turn, is the case if and only if αp is
surjective, which finishes the proof.

Using proposition 1.3 once more, this lemma shows that a morphism of sheaves is an isomorphism if
and only if it is both injective and surjective. At first glance, this may come as a slight surprise: α is
an isomorphism if and only if every αU is bijective. However, we remarked earlier that surjectivity of α
does not require all the maps αU to be surjective. This is explained by the injectivity. The proof of the
previous lemma reveals that if α is injective, then α as a morphism F → im(α) is an isomorphism. In
particular, we get im(α)(U) = im(αU ) = p-im(α)(U). In other words, when we have injectivity, then we
get for free that the presheaf image already is a sheaf. The next lemma shows that the notions of kernel,
cokernel, image, and quotient, for sheaves behave just as the same notions for other algebraic objects,
say groups.

Lemma 1.5. Given a morphism α : F → G of sheaves over X, im(α) is isomorphic to the quotient
F/ker(α) and coker(α) is isomorphic to G/im(α).

Proof. As the stalk of a sheaf associated to a presheaf is exactly the stalk of the presheaf, the stalk of a
quotient is just the quotient of the stalks. By lemma 1.4, the induced map α : F/ker(α) → im(α) is an
isomorphism if and only if for every p ∈ X, the map

αp : Fp/ker(αp) = (F/ker(α))p → im(α)p = im(αp)

is an isomorphism, which is obviously true. The same goes for the cokernel.

Keeping both this lemma as well as lemma 1.4 in mind, we can now turn to exact sequences of sheaves
and treat them similarly as exact sequences of groups. An exact sequence of sheaves is a chain of maps

· · · → Fn−1 αn−1

−−−→ Fn αn−−→ Fn+1 → . . .

satisfying ker(αn) = im(αn−1) for every n ∈ Z. Caution is appropiate when thinking of the local version
of a short exaxct sequence,

0→ E(U)
αU−−→ F(U)

βU−−→ G(U)→ 0,

because, as noted earlier, surjectivtiy of β as a morphism between sheaves does not necessarily imply
surjectivity of βU .
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1.2 Cohomology of Sheaves

Examples

Some examples to have in mind are sheaves on manifolds given by smooth functions with addition,
differential forms with addition, or closed differential forms. If the manifold is complex, then we can
also consider holomorphic functions, differential forms of split type (p, q), or ∂̄-closed differential forms.
Let us review one example in more detail. This will be a counterexample to the fact that the presheaf
cokernel and presheaf image are not automatically sheafs. Let O be the sheaf of holomorphic funtions with
addition and O∗ the sheaf of non-vanishing holomorphic funtions with multiplication on C∗. Consider
the morphism exp: O → O∗ that sends a holomorphic function f ∈ O(U), U ⊂ C∗, to e2πif ∈ O∗(U).
Due to the nature of the complex logarithm, the holomorphic funtion g(z) = z in O∗ is not the image of
any f ∈ O, but given any contractible set U ⊂ C∗, g is in the image of O(U) under exp.

1.2 Cohomology of Sheaves

Fix a manifold M , a locally finite open cover U = {Ui}i∈I of M , and a sheaf F over M . Let In denote
the set of (n+ 1)-tuples of indices in I. We define a cochain complex by

C̃n(U,F) =
∏

(i0,...,in)∈In

F(Ui0 ∩ · · · ∩ Uin)

with coboundary operator δ : C̃n(U,F)→ C̃n+1(U,F) given by

(δσ)(i0,...,in+1) =

n+1∑
j=0

(−1)jσ(i0,...,̂ij ,...,in+1)

∣∣∣
Ui0∩···∩Uin+1

.

That δ2 is really 0 is a straight forward calculation,

(δ2σ)(i0,...,in+2) =

n+2∑
k=0

(−1)k(δσ)(i0,...,̂ik,...,in+2)

∣∣∣
Ui0∩···∩Uin+2

=

n+2∑
k=0

(−1)k
∑
j<k

(−1)jσ(i0,...,̂ij ,...,̂ik,...,in+2)

∣∣∣
Ui0∩···∩Uin+2

+
n+2∑
k=0

(−1)k
∑
j>k

(−1)j−1σ(i0,...,̂ik,...,̂ij ,...,in+2)

∣∣∣
Ui0∩···∩Uin+2

= 0.

Then, we let C∗(U,F) denote the subcomplex of alternating cochains, i.e. cochains σ with σa(i0,...,in) =
sign(a)σ(i0,...,in) for any permutation a. In particular, a cochain is zero whenever ij = ik for some j 6= k.
As usual, we consider the set of cocycles Zn(U,F) and the set of coboundaries δ(Zn−1(U,F)) and define
the cohomology groups Hn(U,F) as the quotient of these two.1 We would like to contruct a homology
independent of U . This will be done by taking a direct limit, where the directed system is given as
follows. Another locally finite open cover U ′ = {U ′j}j∈J is said to be a refinement of U if there is a map

φ : J → I with U ′j ⊂ Uφ(j) for all j ∈ J . Such φ induces a map ρφ : C∗(U,F)→ C∗(U ′,F) via

(ρφσ)(j0,...,jn) = σ(φ(j0),...,φ(jn))

∣∣∣
U ′j0
∩···∩U ′jn

,

1It is known that the resulting homology is isomorphic to the homology of C̃∗(U,F).
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1.2 Cohomology of Sheaves

which clearly satisfies δ′ ◦ ρφ = ρφ ◦ δ and, hence, descends to a map on cohomology. We claim that for a
different choice ψ : J → I, for which U ′ also is a refinement of U , the induced maps ρφ and ρψ are chain
homotopic. Indeed, a chain homotopy δ′ ◦ χ+ χ ◦ δ = ρφ − ρψ is given by

χ : Cn+1(U,F)→ Cn(U ′,F), (χσ)(j0,...,jn) =

n∑
k=0

(−1)kσ(φ(j0),...,φ(jk),ψ(jk),...,ψ(jn)).

Thus, we can write ρ : H∗(U,F) → H∗(U ′,F) independently of the choice of function J → I. With this
setup, we got a directed set with respect to refinement of covers and can define the Čech cohomology of
the sheaf F as the direct limit

Ȟ∗(M,F) = lim
−→

H∗(U,F).

We can easily calculate the zero-th Čech cohomology group.

Proposition 1.6. Ȟ0(M,F) = F(M).

Proof. Given σ = {σi}i∈I ∈ C0(U,F), its coboundary is

δσ =

{
σj

∣∣∣
Ui∩Uj

− σi
∣∣∣
Ui∩Uj

}
i 6=j

.

Thus, if σ is a cocycle, then σi and σj agree on Ui ∩ Uj . By the property of a sheaf, we have σi = ρ|Ui
for some ρ ∈ F(M). This proves that H0(U,F) = Z0(U,F) = F(M) for any locally finite cover U . In
particular,

Ȟ0(M,F) = lim
−→

H0(U,F) = F(M).

For a particular type of sheaf, we can also calculate the other cohomology groups in degree greater
than zero. We say that a sheaf F is fine if it admits a partition of unity for any locally finite open
cover U of M in the following sense: for every j ∈ I and every open set U in the cover, there is a group
homomorphism ηj,U : F(U ∩ Uj)→ F(U) such that, firstly, for any inclusion U ⊂ V , we have

rV,U ◦ ηj,V = ηj,U ◦ rV ∩Uj ,U∩Uj
and, secondly, for any section σ ∈ F(U),∑

j∈I
ηj,U

(
σ
∣∣∣
U∩Uj

)
= σ.

Proposition 1.7. For a fine sheaf F over M , Ȟn(M,F) = 0 for all n ≥ 1.

Proof. Let a cocycle σ ∈ Zn(U,F) be given. To shorten notation, abbreviate Un = Ui0 ∩ · · · ∩ Uin and
write Ukn for Ui0 ∩ · · · ∩ Ûik ∩ · · · ∩ Uin . Define an element τ ∈ Cn−1(U,F) by

τ(i0,...,in−1) =
∑
j∈I

ηj,Un−1

(
σ(j,i0,...,in−1)

)
.

We can compute

n∑
k=0

(−1)kηj,Ukn

(
σ(j,i0,...,̂ik,...,in)

) ∣∣∣∣
Un

= ηj,Un

(
n∑
k=0

(−1)kσ(j,i0,...,̂ik,...,in)

∣∣∣
Un∩Uj

)
︸ ︷︷ ︸

=σ(i0,...,in)|Un∩Uj because δσ=0
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1.3 The de Rham Theorem

and, hence,

(δτ)(i0,...,in) =

n∑
k=0

(−1)k
∑
j∈I

ηj,Ukn

(
σ(j,i0,...,̂ik,...,in)

) ∣∣∣∣
Un

=
∑
j∈I

ηj,Un

(
σ(i0,...,in)

∣∣∣
Un∩Uj

)
= σ(i0,...,in).

This proves that every cocycle is exact in Hn(U,F). Of course, the direct limit is then zero, as well.

An example of a fine sheaf is the sheaf of smooth functions or the sheaf of differential forms, where a
partition of unity is exactly that in the usual sense.

Our next goal is to prove the de Rham theorem. To this end, we first need to find a long exact
sequence in Čech cohomology.

Proposition 1.8. Suppose we have a short exact sequence of sheaves

0→ E α−→ F β−→ G → 0.

Then there is a long exact sequence

· · · → Ȟn−1(M,G)→ Ȟn(M, E)→ Ȟn(M,F)→ Ȟn(M,G)→ Ȟn+1(M, E)→ . . .

Outline of Proof. Due to the surjectivity issue of βU : F(U)→ G(U), the sequence

0→ E(U)
αU−−→ F(U)

βU−−→ G(U)→ 0

is not neccessarily exact. This is resolved by working with presheaves. Let D be the quotient presheaf
F/E , where we consider E as a subsheaf of F via the injective morphism α. We did not define several
notions for presheaves to avoid confusion, but one can verify that we can build an analogue cochain
complex for a presheaf and that we get an exact sequence

0→ Cn(U, E)
α−→ Cn(U,F)

β−→ Cn(U,D)→ 0

for any open cover U . Since this is just a cochain complex, we know that there exists a corresponding
long exact sequence in cohomology. Thus, passing to the direct limit gives us a long exact sequence

· · · → Ȟn−1(M,D)→ Ȟn(M, E)→ Ȟn(M,F)→ Ȟn(M,D)→ Ȟn+1(M, E)→ . . .

Lastly, it is a technical result that Ȟ∗(M,D) is isomorphic to the cohomology of the sheaf D∗ associated
to the presheaf D. The latter is exactly G by lemma 1.5 and exactness of the sequence of sheaves,

G = im(β) ∼= F/ker(β) = F/im(α) ∼= F/E = D∗.

1.3 The de Rham Theorem

Theorem 1.9 (de Rham). The singular cohomology H∗sing(M,R) with coefficients in R is isomorphic to
the de Rham cohomology H∗dR(M).

We will prove this theorem in two steps by showing that each of these cohomology theories is iso-
morphic to the Čech cohomology of a sheaf over M . Let RM denote the sheaf of constant R-valued
functions.

8



1.3 The de Rham Theorem

Lemma 1.10. H∗sing(M,R) is isomorphic to Ȟ∗(M,RM ).

Proof. By the universal coefficients theorem2, it suffices to prove that H∗sing(M,Z) is isomorphic to

Ȟ∗(M,ZM ), where ZM denotes the sheaf of constant Z-valued functions. Let K denote the simpli-
cial complex realizing the underlying topological space of M . It is a standard result that the simplicial
cohomology of K is isomorphic to the singular cohomology of M . Therefore, it suffices to find an iso-
morphism from Ȟ∗(M,ZM ) to H∗CW(K,Z). Given a vertex ν in K, let Star(ν) denote the interior of the
union of all simplices in K for which ν is a vertex. Then U = {Star(ν) | ν vertex} is an open cover of M .
Given a finite collection of vertices νi, 0 ≤ i ≤ k, the intersection of all Star(νi) is empty unless every
νi is a vertex of the same simplex. In that case, the intersection is exactly the interior of that simplex.
Given a cochain σ ∈ Cn(U,ZM ), we can define a simplicial cochain σ′ as follows: if ∆ is the simplex
〈νi0 , . . . , νin〉, then we set σ′(∆) = σ(i0,...,in), which gives us an isomorphism Cn(U,ZM ) → CnCW (K,Z)
of groups because

ZM

 n⋂
j=0

Star(νj)

 =

{
Z, if the νj span an n-simplex,

0, otherwise.

Moreover, this isomorphism clearly commutes with the coboundary operators so that we get an isomor-
phism of chain complexes and, hence, an isomorphism of cohomology H∗(U,ZM ) → H∗CW(K,Z). By
considering finer triangulations of K, the cover U may be taken arbitrarily small so that the isomorphism
continues to hold after taking the direct limit. Thus,

Ȟ∗(M,ZM ) = lim
−→

H∗(U,ZM ) ∼= H∗CW(K,Z) ∼= H∗sing(M,Z).

Now let us turn to the second half of the proof of the de Rham theorem. Let Ωk denote the sheaf
of differential k-forms and Zk the subsheaf of closed differential k-forms. In the following, d denotes the
usual exterior differential of forms.

Lemma 1.11. H∗dR(M) is isomorphic to Ȟ∗(M,RM ).

Proof. Consider the sequence

0→ Zk ↪→ Ωk
d−→ Zk+1 → 0,

which is obviously exact at the first and second stage. Using lemma 1.4, we see that a sequence of sheaves
is exact if and only if the induced sequence of stalks is exact at every point. The latter actually is an
exact sequence. Indeed, the Poincaré lemma from differential topology states that locally every form is
exact. Thus, the above sequence of sheaves is also exact at the third stage. Now let us consider the
induced long exact sequence in cohomology,

· · · → Ȟn−1(M,Zk+1)→ Ȟn(M,Zk)→ Ȟn(M,Ωk)→ Ȟn(M,Zk+1)→ Ȟn+1(M,Zk)→ . . .

Clearly, Ωk is a fine sheaf so that, by proposition 1.7, Ȟn(M,Ωk) vanishes for n ≥ 1. Consequently,
Ȟn(M,Zk+1) is isomorphic to Ȟn+1(M,Zk) for n ≥ 1. Iterating this statement yields

Ȟ1(M,Zn−1) ∼= · · · ∼= Ȟn(M,Z0).

2The universal coefficients theorem also holds for cohomology of sheaves, see [1].
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1.3 The de Rham Theorem

The sheaf Z0 is the sheaf of closed zero forms, i.e. is exactly the sheaf RM . For the cohomology group
on the left, we analyze the beginning of the long exact sequence,

· · · → Ȟ0(M,Ωk)→ Ȟ0(M,Zk+1)→ Ȟ1(M,Zk)→ Ȟ1(M,Ωk)︸ ︷︷ ︸
=0

→ . . . .

We invoke proposition 1.6 to check that Ȟ0(M,Ωk) is exactly Ωk(M) and Ȟ0(M,Zk+1) is Zk+1(M).
Combining the last two results gives rise to

Ȟ1(M,Zn−1) ∼= Zn(M)/d
(
Ωn−1(M)

)
= Hn

dR(M).

We are finished proving the lemma since now

Ȟn(M,RM ) = Ȟn(M,Z0) ∼= Ȟ1(M,Zn−1) ∼= Hn
dR(M).

Note that we can recast this result into a more general setting. The proof of the following theorem
can be taken word for word from the lemma.

Theorem 1.12 (General de Rham Theorem). Suppose we are given fine sheafs Gk, subsheafs Fk of Gk,
and morphisms dk : Gk → Fk+1 such that the sequence

0→ Fk ↪→ Gk dk−→ Fk+1 → 0

is exact for all k ≥ 0. Then for all n ≥ 0 we have

Ȟn(M,F0) ∼= Fn(M)/dn−1
(
Gn−1(M)

)
.

One instance where the above sequence is exact is for split differential forms on a complex manifold.
Let Ωph denote the sheaf of holomorphic p-forms.

Theorem 1.13 (Dolbeault). If M is a complex manifold, then the Čech cohomology group Ȟq(M,Ωph)
is isomorphic to the Dolbeault cohomology group Hp,q

∂̄
(M).

Proof. We take Gk to be sheaf of split differential forms of type (p, k) and Fk to be the subsheaf of ∂̄-
closed such forms. The analogue of the Poincaré lemma for the ∂̄-operator3 says that the short sequence
in theorem 1.12 is exact. F0 is exactly Ωph and the quotient on the right hand side of the conclusion of
the general de Rham theorem is Hp,q

∂̄
(M).

3We prove the ∂̄-Poincaré lemma independently in lemma 2.10.
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2 Currents

2.1 Distributions and Currents

We will first deal with smooth functions and forms in euclidean space and later consider holomorphic
equivalents in the complex setting. The Cp topology on the space C∞c (Rn) of compactly supported
smooth functions is defined by saying φn → 0 if Dαφn → 0 uniformly for all multi-indices α with |α| ≤ p,
where we use the notation4 Dj = ∂

∂xj
and Dα = Dα1

1 . . . Dαn
n . This way, the Cp topology is finer than

the Cq topology whenever p > q. We define the C∞ topology to be the smallest topology containing
all the Cp topologies. A distribution on Rn is a C∞-continuous linear map T : C∞c (Rn) → C, and we
denote the vector space of all distributions by D(Rn). A distribution is said to be of finite order if it is
Cp-continuous for some p < ∞. We introduce the notion of differentiation on the space of distributions
by defnining

DjT (φ) = −T (Djφ).

The choice of minus sign will be motivated later. We will discuss some examples further below, but before
that we want to introduce currents. Let Ωqc(Rn) denote the space of smooth compactly supported q-forms
on Rn with the topology induced from the C∞ topology on C∞c (Rn). The vector space of currents of
degree q is the topological dual

Cq(Rn) =
{
T : Ωn−qc (Rn)→ C

∣∣ T is linear and bounded
}
.

The exterior derivative for forms extends to currents via

d : Cq(Rn)→ Cq+1(Rn), (dT )(φ) = (−1)q+1T (dφ)

such that we still have d2 = 0. Let us briefly check that the new notions translate to a manifold setting.
Let M be a smooth manifold. Clearly, all the definitions continue to work if we replace Rn by an open
subset U ⊂ Rn. Moreover, if f : U → V is a smooth diffeomorphism (for example, a transition map
between two charts), then it induces a continuous isomorphism C∞c (V ) → C∞c (U). Hence, we can can
locally check whether a map T : C∞c (M) → C is continuous in the C∞ topology, independent from the
choice of chart. This argument shows that the analogous definition of D(M) is well-defined. The same
holds for Cq(M).

Examples

Here, we want to review some of the standard examples. Let ψ be a locally integrable function on Rn.
We can associate to ψ a distribution Tψ given by

Tψ(φ) =

∫
Rn
ψ(x)φ(x)dx.

This class of examples motivates the choice of minus sign in the definition of the differential. Indeed, if
ψ is continuously differentiable, then we can compute by partial integration

(DjTψ)(φ) = −
∫
Rn
ψ(x)

(
∂

∂xj
φ(x)

)
dx =

∫
Rn

(
∂

∂xj
ψ(x)

)
φ(x)dx = TDjψ(φ).

4We sometimes switch freely between the notations D, Dj , ∂
∂xj

, ∂j etc.
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2.1 Distributions and Currents

Another well-known distribution is the dirac distribution, or δ-distribution. δ simply evaluates its input
at 0, i.e. δ(φ) = φ(0). For n = 1, the δ-distribution appears as the differential of a distribution of the
first example: If ψ is the function on R that is 0 for x < 0 and is 1 for x ≥ 0, then

(DTψ)(φ) = −
∫
R
ψ(x)φ′(x)dx = −

∫ ∞
0

φ′(x)dx = φ(0).

We can consider similar examples for currents. Suppose ψ =
∑
I ψIdxI is a q-form on Rn, whose

coefficients ψI are locally integrable. Then the associated current Tψ ∈ Cq(Rn) is

Tψ(φ) =

∫
Rn
ψ ∧ φ.

As before, these examples motivate the choice of sign (−1)q+1 in the definition of the differential, since
we have

(dTψ)(φ) = (−1)q+1

∫
Rn
ψ ∧ dφ =

∫
Rn
dψ ∧ φ−

∫
Rn
d(ψ ∧ φ) = Tdψ(φ),

for all smooth forms, where we used Stoke’s theorem in the last equation. The second example that we
will now introduce will be used later when we deal with cohomology theory. Suppose Γ is a piecewise
smooth, oriented, (n− q) chain in Rn. Then Γ induces a current of degree q by integration,

TΓ(φ) =

∫
Γ

φ.

Computing the differential gives a hint that this is suitable for cohomology theory later on,

(dTΓ)(φ) = (−1)q+1

∫
Γ

dφ = (−1)q+1

∫
∂Γ

φ = (−1)q+1T∂Γ(φ),

where we used Stoke’s theorem again.

Smoothening Distributions

We say that a distribution T is smooth if we have T = Tψ for some smooth function ψ on Rn. We
will show that any distribution can be approximated arbitrarily well by a smooth one. Pick a smooth,
non-negative, radially symmetric, function χ : Rn → R with a compact support containing the origin and
such that

∫
Rn χ(x)dx = 1. Define χε to be the function 1

εnχ(xε ). This function has the same properties
as χ, but its support is ε·supp(χ) Note that Tχε → δ as ε → 0 as distributions. Let T ∈ D(Rn) be any
distribution and denote by

T̃ε(x) = Ty(χε(x− y))

the evaluation of T at the function y 7→ χε(x − y). This is a continuous function Rn → C by the C∞

continuity of T and is even smooth by linearity of T and smoothness of χ with derivatives given by

∂

∂xj
T̃ε(x) = lim

h→0

T̃ε(x+ hxj)− T̃ε(x)

h
= lim
h→0

Ty

(
χε(x+ hxj − y)− χε(x− y)

h

)
= Ty

(
∂

∂xj
χε(x− y)

)
and, consequently, for any multi-index α

DαT̃ε(x) = Ty (Dα
xχε(x− y)) .

Now let Tε denote the smooth distribution TT̃ε associated to the function T̃ε. We need to check that
Tε → T as ε→ 0. This is the content of the next lemma. Given a function φ, we set

φε(x) =

∫
Rn
φ(y)χε(x− y)dy

(
=

∫
Rn
φ(y)χε(y − x)dy

)
.
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Lemma 2.1. The newly defined distribution satisfies:
1. (Tψ)ε = Tψε , for ψ ∈ C∞(Rn),
2. Tε(φ) = T (φε), for φ ∈ C∞c (Rn),
3. (DαT )ε = Dα(Tε).

Proof. The first part follows readily from the definition since Tψ(χε(x − y)) = ψε(x). The second step
uses the linearity of T ,

Tε(φ) =

∫
Rn

(
Ty(χε(x− y))

)
φ(x)dx = Ty

(∫
Rn
χε(x− y)φ(x)dx

)
= T (φε).

It suffices to prove the last part for an arbitrary D = ∂
∂xj

. We first prove the assertion for a smooth

distribution T = Tψ. We calculate using integration by parts twice

(DTψ)ε(φ) = −
∫
Rn

(∫
Rn
ψ(y)

∂

∂yj
χε(x− y)dy

)
φ(x)dx

=

∫
Rn

(∫
Rn
χε(x− y)

∂

∂yj
ψ(y)dy

)
φ(x)dx

= −
∫
Rn

∂

∂xj
φ(x)

(∫
Rn
χε(y − x)ψ(y)dy

)
dx

= Tψε

(
− ∂

∂xj
φ

)
= (Tψ)ε

(
− ∂

∂xj
φ

)
= D((Tψ)ε)(φ).

In particular, for smooth functions ψ we get (Dψ)ε = D(ψε), i.e. not just as a distributional equation.
For a general distribution T , we can conclude

(DT )ε(φ)
part 2

= (DT )(φε) = −T
(
D(φε)

)
= −T

(
(Dφ)ε

) part 2
= −Tε(Dφ) = D(Tε)(φ).

Currents as Differential Forms

Convention: we assume that all multi-indices are ordered. We would like to view a current T ∈ Cq(Rn)
as some sort of differential form. Firstly, define distributions TI ∈ D(Rn) for every multi-index I by

TI(φ) = T (φ ? dxI) ,

where ? denotes the Hodge star operator. The only thing we need to know about the Hodge star operator
is that ?dxI = ±dx?I , where we write ?I for the multi-index containing every index that is not contained
in I. The sign depends on whether “I∪?I” is an even or odd permutation of (1, . . . , n). Let us symbolically
write dx1 ∧ · · · ∧ dxn for 1. In particular, we have

dxI ∧ dxJ =


1, if dxJ = ?dxI ,

−1 if dxJ = − ? dxI ,
0, if dxJ 6= ± ? dxI .

We would like to identify a current T with the “differential form” given by∑
|I|=q

TIdxI ,
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2.1 Distributions and Currents

which has distributions as coefficients. We interpret this expression as follows: given a differential form
φdxJ ∈ Ωn−qc (Rn), we set

TIdxI(φdxJ) = TI(φ)dxI ∧ dxJ ,

where dxI ∧ dxJ stands for 0, 1 or −1 as noted above. Then this identification works out for if ω is a
form

∑
|J|=n−q φJdxJ ∈ Ωn−qc (Rn), then∑

|I|=q

TIdxI(ω) =
∑
|I|=q

∑
|J|=n−q

TI(φJ)dxI ∧ dxJ =
∑

|J|=n−q

sign(?J ∪ J)T?J(φJ)

=
∑

|J|=n−q

T (φJ sign(?J ∪ J) ? dx?J︸ ︷︷ ︸
=dxJ

) =
∑

|J|=n−q

T (φJdxJ) = T (ω).

This is compatible with the usual differential of forms in light of

dT = (−1)q+1
n∑
k=1

∑
|I|=q

(TI ◦ ∂k) dxI ∧ dxk =

n∑
k=1

∑
|I|=q

(∂kTI)dxk ∧ dxI .

If T is the current associated to a differential form

ψ =
∑
I

hIdxI ,

then the distributions TI are (as expected) the distributions associated to hI . The same point of view
makes sense for currents of split type in the complex case, i.e. linear bounded maps from the space of
compactly supported forms of split type (p, q) to C. The operator

∂̄ : Cp,q(M)→ Cp,q+1(M), (∂̄T )(φ) = (−1)p+q+1T (∂̄φ)

whose square is zero, as well as ∂ : Cp,q(M) → Cp+1,q(M), are also compatible with the point of view of
differential forms.

Remark 2.2. Caution is needed in the complex case: A (p, p)-current may take both ω and ω as an
input for ω ∈ Ωn−p,n−pc (Cn). However, when considering expressions of the form T (ω), this really just
conjugates the complex number T (ω) and not the differential form representing T . To illustrate what we
mean, consider a (n, n)-current T . A (n, n)-current is just a distribution, so the representation as a form
becomes Sdz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n for some distribution S. Then T (φ), φ ∈ C∞c (Cn), is exactly S(φ)
and not

S(φ)dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n = S(φ)dz̄1 ∧ dz1 ∧ · · · ∧ dz̄n ∧ dzn
= (−1)nS(φ)dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.

In particular, we may not apply the usual complex conjugation for forms to the form representation of a
current.

Lastly, note that this point of view enables us to also smoothen currents simply by smoothing the
distribution coefficients,

Tε =
∑
|I|=q

(TI)εdxI .
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2.1.1 Regularity of the Differential Operator

Extend the Laplacian to distributions by

∆ = −
∑
j

∂2

∂x2
j

.

A distribution is said to be harmonic if ∆T = 0. If T is the distribution Tψ associated to some function
ψ, then T is a harmonic distribution if and only if ψ is a harmonic function. This even holds for all
distributions as the next lemma shows.

Lemma 2.3. Any harmonic distribution on Rn is the associated distribution of some harmonic function.

Proof. Given a function ψ ∈ C∞c (Rn), recall the notation

ψε(x) =

∫
Rn
ψ(y)χε(x− y)dy,

where χε is the function from the chapter on the smoothing of distributions. For a special choice of such
function χ, the integral defining ψε becomes exactly the formula for the mean value property of harmonic
functions. Thus, if ψ is harmonic, then ψε = ψ. Now let Tε be the smoothing of T . In the remainder of
the proof, we will use the properties of the smoothing established in lemma 2.1. Since ∆Tε = (∆T )ε = 0,
the smoothing Tε is the distribution associated to a harmonic function ψε. Then for the smoothing of
the smoothing

(Tε)δ = (Tψε)δ = T(ψε)δ = Tψε = Tε.

In particular, if we evaluate Tε on a test function φ ∈ C∞c (Rn), then

Tε(φ) = (Tε)δ(φ) = Tε(φδ).

Letting ε tend to 0, Tε(φ) becomes T (φ) and the right hand side becomes T (φδ) = Tδ(φ). In other words,
we conclude that T = Tδ, which is a distribution associated to a harmonic function.

The analogue statement for the inhomogeneous equality is an immediate corollary from this lemma
plus the classical solution to the Poisson formula.

Corollary 2.4. If a distribution T ∈ D(Rn) satisfies ∆T = Tη for some η ∈ C∞c (Rn), then T is the
distribution associated to some ψ ∈ C∞(Rn) with ∆ψ = η.

Proof. It is a classical result that we can take a smooth function ρ with ∆ρ = η. Such a solution can be
constructed by using Green’s formula. Then ∆(T − Tρ) = 0, so by the preceeding lemma T − Tρ = Tψ
for some harmonic function ψ. In particular, T = Tψ+ρ.

The last two results were statements about the global case. The same works for the local case, too.

Lemma 2.5. If T ∈ D(U) is a harmonic distribution on some open subset U ⊂ Rn, then T is the
associated distribution to some function that is harmonic inside U .

Proof. The obstruction we face is that the smoothing φε may have support outside U . However, fixing a
relatively compact open subset V ⊂ U , we can pick ε small enough so that for any function φ ∈ C∞c (V ),
the support of φε is contained in U . Then the smoothing Tε is defined on V and equals TψV for some
harmonic function ψV on V . For any φ ∈ C∞c (V ) we get TψV (φ) = Tε(φ) ≡ T (φ). Doing the same on any
relatively compact open set V ⊂W ⊂ U , we obtain TψW with ψV = ψW |V . This proves the lemma.
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As a consequence, we obtain the analgoue statement for the ∂̄-operator.

Theorem 2.6 (Regularity of the ∂̄-operator). If a distribution T ∈ D(U), where U is an open subset of
Cn, is ∂̄-closed, then T is the distribution associated to some holomorphic function on U .

Proof. Note that ∂̄T = 0 implies ∆T = 0. Thus, the preceeding lemma yields a harmonic function f
with T = Tf . But this function must be holmorphic since 0 = ∂̄T = ∂̄Tf = T∂̄f .

This was a theorem for distributions and, indeed, we cannot simply replace the word “distribution”
by “current”. Fortunately, we can do so with an additional assumption on the degree of the current,
which is sufficient for later applications.

Corollary 2.7 (Regularity of the ∂̄-operator for currents). Suppose T is a current of type (p, 0) on some
open subset U ⊂ Cn. If T is ∂̄-closed, then it is a holomorphic differential form, i.e. a smooth differential
form with holomorphic coefficients.

Proof. Write the current as T =
∑
|I|=p TIdzI . Because its anit-antiholmorphic degree is 0, ∂̄T = 0

reduces to ∂̄TI = 0 for every I. Applying the previous theorem yields the corollary.

2.1.2 Cohomology of Currents

Since the differential for currents satisfies d2 = 0, we get a complex of currents (C∗(M), d) and, hence, an
associated cohomology H∗(C,M). In the complex case, we also get a complex (Cp,∗(M), ∂̄) and an asso-
ciated cohomology Hp,∗

∂̄
(C,M). We would like to show the following relation to well-known cohomology

theories.

Theorem 2.8. The cohomology of currents H∗(C,M) is isomorphic to the de Rham cohomology H∗dR(M).

Theorem 2.9. If the manifold is complex, then the cohomology of complex currents Hp,∗
∂̄

(C,M) is iso-

morphic to the Dolbeault cohomology Hp,∗
∂̄

(M).

Just like the proof of the Dolbeault theorem was very similar to the proof of the de Rham theorem,
it is the same for these two theorems. We will write down the proof for the second one only.

Proof of theorem 2.9. The idea is to use the general de Rham theorem again. There is an obvious fine
sheaf Cp,q of currents of type (p, q). Let Fq denote the kernel sheaf of ∂̄ : Cp,q → Cp,q+1. If we can show
that the sequence

0→ Fq ↪→ Gq ∂̄−→ Fq+1 → 0

is exact for all q ≥ 0, then by the general de Rham theorem 1.12

Ȟq(M,F0) = Fq(M)/∂̄
(
Cp,q−1(M)

)
= Hp,q

∂̄
(C,M).

The sheaf F0 is actually Ωph by the regularity of the ∂̄-operator, corollary 2.7. Thus, the check cohomology
group on the left is exactly Hp,q

∂̄
(M) by the Dolbeault theorem. The only stage of the sequence where

being exact is not obvious is the third one. As before, by considering the sequence of the stalks, it suffices
to show that locally every ∂̄-closed current is exact. Hence, the proof of this theorem reduces to the
∂̄-Poincaré lemma below.

Lemma 2.10 (∂̄-Poincaré lemma for currents). A ∂̄-closed current is locally ∂̄-exact.
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2.1 Distributions and Currents

Proof. Assume T is a ∂̄-closed (p, q)-current and V is a small open set in Cn. We will construct a ∂̄-
antiderivative T̃ of T on V . Define Tc(φ) to be T (ρ ·φ), where ρ : Cn → [0, 1] is a smooth function that is
1 on V and 0 outside some slightly larger U(ρ). Then Tc agrees with T on V and is zero on Cn \U(ρ), i.e.
Tc(φ) = 0 for forms with support in Cn \U(ρ). Tc is also ∂̄-closed on V since ∂̄ρ has support in U(ρ) \V ,

∂̄Tc(φ) = (−1)p+q+1T (ρ∂̄φ) = (−1)p+q+1T (∂̄(ρφ)) + (−1)p+qT (∂̄ρ ∧ φ︸ ︷︷ ︸
=0

) = ∂̄T (ρφ) = 0.

Next, we invoke proposition 2.11 from below, which states that there is a continuous linear operator

K : Ωp,qc (Cn)→ Ωp,q−1(Cn)

with ∂̄ ◦K −K ◦ ∂̄ = (−1)p+qid. With this, we can define a new (p, q − 1)-current by T̃ (φ) = Tc(K(φ)).
Even though the image of φ under K may not have compact support, this is well-defined by the additional
property of Tc. Then on V

∂̄T̃ (φ) = (−1)p+qTc

(
K ◦ ∂̄(φ)

)
= (−1)p+qTc

( (
∂̄ ◦K − (−1)p+q+1id

)
(φ)
)

= −∂̄Tc
(
K(φ)

)
+ Tc(φ) = T (φ) + (−1)p+q+1T (∂̄ρ ∧K(φ)).

By taking bump functions ρε with U(ρε) \ V → ∅, the remaining term vanishes in the limit.

In the proof of the lemma, we referred to the following result.

Proposition 2.11. There is a continuous linear operator

K : Ωp,qc (Cn)→ Ωp,q−1(Cn)

such that ∂̄ ◦K −K ◦ ∂̄ = (−1)p+qid.

This is related to the so called Bochner-Martinelli kernel, which is the content of the next subchapter.
In that subchapter, we will prove this proposition. However, we first want to explore the isomorphisms
between the cohomology theories. The downside of the general de Rham theorem is that it is not
constructive. Fortunately, we can still find the isomorphism. In fact, they are quite easy to write down.
The map Ω∗(M) → C∗(M) that maps a form ψ to the associated current Tψ descends to an injective
homomorphism H∗dR(M) → H∗(C,M), which must therefore be an isomorphism. The isomorphism in
the complex case is analogous. In the examples section we also discussed currents incuded by integration
over a piecewise smooth oriented chain. Moreover, we calculated that dTΓ = (−1)q+1T∂Γ. Using that
the singular cohomology and the piecewise smooth singular cohomology are isomorphic, we can therefore
find a map H∗sing(M) → H∗(C,M) that sends [Γ] to [TΓ]. If ∂Γ and ∂Γ′ are not the same, then we can

find a form φ with
∫
∂Γ
φ 6=

∫
∂Γ′

φ. Thus, the above map also is an injective homomorphism. Since
both H∗sing(M) and H∗(C,M) are isomorphic to the de Rham cohomology, this injective map also is an
isomorphism.

2.1.3 The Bochner-Martinelli Kernel

In this section, we want to find the homotopy operator from proposition 2.11. This will be done by
introducing the so called Bochner-Martinelli kernel. The construction relies on the fundamental solution
to the Laplace equation. Since this solution needs to be expressed differently for the cases n = 1 and
n ≥ 2 (once using the logarithm and once using a negative power), we will only consider the case n ≥ 2.
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2.1 Distributions and Currents

For n = 1, the definitions have to be appropiately adapted but the arguments do not change. Begin by
considering the smooth differential form on Cn \ {0} given by

k̃BM(z) =
cn

n− 1

n∑
j=1

(−1)j
(
∂

∂zj

1

|z|2n−2

)
dz̄1 ∧ · · · ∧ d̂z̄j ∧ · · · ∧ dz̄n ∧ dz1 ∧ · · · ∧ dzn,

where cn is a suitable complex contant specified later. Consequently,

dk̃BM(z) = ∂̄k̃BM(z) = − cn
n− 1

 n∑
j=1

∂

∂z̄j

∂

∂zj

1

|z|2n−2

 dz̄1 ∧ · · · ∧ dz̄n ∧ dz1 ∧ · · · ∧ dzn.

Since k̃BM is locally integrable (even at 0), we can regard it as a current on Cn. Recall that |z|2−2n is (up
to a constant factor) the fundamental solution to the Laplace equation. Thus, if we choose the constant
cn accordingly, then the right hand side of the last equation viewed as a (n, n)-current is exactly the dirac
distribution δ. Set

τ : Cn × Cn → Cn, (z, ζ) 7→ ζ − z

and define the Bochner-Martinelli kernel as kBM = τ∗k̃BM. This is a smooth differential form on Cn×Cn
minus the diagonal but as it inherits the local integrability of k̃BM we can also consider it as a current
on Cn ×Cn. Let [∆] denote the current given by τ∗δ. In other words, [∆](φ) is exactly the integral of φ
along the diagonal in Cn × Cn, for φ ∈ Ω0

c(Cn × Cn) = C∞c (Cn × Cn). Then we get

dkBM = ∂̄kBM = τ∗∂̄k̃BM = τ∗δ = [∆].

We are (almost) ready to construct the homotopy operator. The next result is the main step.

Proposition 2.12 (Bochner-Martinelli formula). For every φ ∈ Ωqc(Cn) it holds that

d

∫
ζ∈Cn

φ(ζ) ∧ kBM(z, ζ)−
∫
ζ∈Cn

dφ(ζ) ∧ kBM(z, ζ) = (−1)qφ(z),

where the first differential operator d is differentiation of currents.

Proof. Consider the current

T (z, ζ) = φ(ζ) ∧ kBM(z, ζ) ∧ ψ(z),

where ψ ∈ Ω2n+1−q
c (Cn). Using dkBM = [∆], we can compute the differential of T to be

dT = dφ ∧ kBM ∧ ψ + (−1)qφ ∧ [∆] ∧ ψ + (−1)q+1φ ∧ kBM ∧ dψ.

For the smooting Tε of T , we can use the regular Stokes’ theorem,

0 =

∫
Cn×Cn

d(Tε) =

∫
Cn×Cn

(dT )ε
ε→0−−−→

∫
Cn×Cn

dT.

By definition of [∆], the following identity of integrals is immediate,∫
Cn×Cn

φ(ζ) ∧ [∆] ∧ ψ(z) =

∫
Cn
φ(z) ∧ ψ(z).
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2.2 Positive Currents

Combining the previous two statements yields

0 =

∫
Cn×Cn

dφ ∧ kBM ∧ ψ + (−1)q
∫
Cn
φ(z) ∧ ψ(z) + (−1)q+1

∫
Cn×Cn

φ ∧ kBM ∧ dψ.

If S denotes the (2n− 1 + q)-current associated to φ∧ kBM, then the right-most term is exactly −dS(ψ).
Thus, the above equality translates into the equation of currents

0 =

∫
Cn×Cn

dφ ∧ kBM + (−1)qφ− dS,

which is what we wanted to show.

Let kBM
p,q denote the (p, q)-type part with respect to z of kBM. Note that the type of kBM

p,q with
respect to ζ is then (n− p, n− q − 1). Given a smooth differential form φ ∈ Ωp,qc (Cn), define K(φ) by

K(φ)(z) =

∫
ζ∈Cn

φ(ζ) ∧ kBM
p,q−1(z, ζ).

Let us show that this is a well-defined smooth differential form on Cn.

Lemma 2.13. K defines a linear operator Ωp,qc (Cn)→ Ωp,q−1(Cn). Furthermore, K is continuous.

Proof. That K(φ) is a well-defined form follows from the fact that the singularity of kBM along {ζ = z}
is integrable. The fact that this is a smooth differential form follows from the exact definition of kBM.
The details of this argument are fundamental analytical observations and are omitted. For a reference,
see [5, p. 64ff]. This establishes the first part of the lemma. To show that K is continuous, given an
element φ ∈ Ωp,qc (Cn), define dαβ̄φ to be the differential form obtained by replacing the coefficients of φ
by their ∂α∂̄β-th derivative. It holds that dαβ̄ ◦ K = K ◦ dαβ̄ . Now suppose that (φk)k≥0 ⊂ Ωp,qc (Cn)

converges to 0. This means that for every derivative dαβ̄φk the coefficients converge uniformly to 0. But
then the same can be said of the coefficients of dαβ̄K(φk) = K(dαβ̄φk). In other words, K(φ) converges
to 0, which finishes the proof.

Lastly, we need to show that K is exactly the required homotopy operator. We can consider all the
(p, q)-types in the Bochner-Martinelli formula seperately to find that the equations of currents

∂̄K(φ)−K(∂̄φ) = (−1)p+qφ

hold. Because K(φ) actually is a smooth differential form, this equation also holds as an equation of
differential forms. We have now proved proposition 2.11.

2.2 Positive Currents

2.2.1 Poincaré Lemmata

The analogue of the ∂̄-Poincaré lemma for the ∂-operator is an immediate consequence, but since we
never explicitly stated it, let us rectify this now.

Lemma 2.14 (∂-Poincaré lemma). A ∂-closed current is locally ∂-exact.

Proof. Suppose ∂T = 0 for some (p, q)-current T . Define a (q, p)-current by T ′(φ) = T (φ). Then T ′ is
∂̄-closed,

∂̄T ′(φ) = (−1)q+p+1T ′(∂̄φ) = (−1)p+q+1T (∂φ) = ∂T (φ) = 0.
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2.2 Positive Currents

By the ∂̄-Poincaré lemma for currents, locally T ′ = ∂̄S′ for some (q, p − 1)-current S′. As before, set
S(φ) = S′(φ). Then

∂S(φ) = (−1)q+pS(∂φ) = (−1)p+qS′(∂̄φ) = ∂̄S′(φ) = T ′(φ) = T (φ).

This concludes the lemma.

We can extend this to prove another analogue of a Poincaré lemma; this time for the composition
∂∂̄. The proof is not as trivial, but it still merely is a repeated application of the various Poincaré
lemmata we know so far. However, let us first introduce some new relevant notions to cast this result
in a prettier language. If a current has the same degree in both types, i.e. T ∈ Cp,p(M), then it can
take both φ and φ as input. We say that T is a real current if T (φ) = T (φ) for every φ ∈ Ωn−p,n−pc (M).
Caution is appropriate: a real current in this sense can still take complex values since the condition
is not T (φ) = T (φ). We can analyze this definition by considering currents as forms. Suppose T is a
(p, p)-current with representation as a differential form locally given by

T =
∑

|I|=p=|J|

TI,JdzI ∧ dz̄J ,

with distribution coefficients TI,J . Evaluating it on the form

ω =
∑

|I|=p=|J|

φI,Jdz?I ∧ dz̄?J

as well as on ω yields the horrible looking formulas

T (ω) = (−1)p(n−p)+
n(n−1)

2

∑
|I|=p=|J|

sign(I)sign(J)TI,J(φI,J),

T (ω) = (−1)n(n−p)+n(n−1)
2

∑
|I|=p=|J|

sign(I)sign(J)TI,J(φJ,I).

Thus, T (ω) = T (ω) if TI,J(φI,J) = (−1)n−pTJ,I(φI,J) for all I, J . More generally, T is real if and only

TI,J(φ) = (−1)n−pTJ,I(φ) for any input φ ∈ C∞c (Cn) and all I, J . To verify that this definition is sensible,
let us check compatibility with smooth forms. Suppose the coefficients TI,J are associated distributions
ThI,J for some smooth functions hI,J . Then

TI,J(φ) =

∫
Cn
hI,Jφdz̄1 ∧ dz1 ∧ · · · ∧ dz̄n ∧ dzn = (−1)n

∫
Cn
hI,Jφdz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

so that T is a real current if and only if hI,J = (−1)phJ,I for all I, J . It is common to write smooth
(p, p)-forms with a complex factor in front,

ψ = ip
∑

|I|=p=|J|

hI,JdzI ∧ dz̄J ,

because now Tψ is a real current if and only if hI,J = hJ,I for all I, J or, equivalently, ψ = ψ. This is the
usual condition we know from complex geometry for a form to be real. We would also like to introduce
the notion of a positive current. Note that for a real (p, p)-current T and a (n− p, 0)-test form η we have

in−pT (η ∧ η̄) = in−pT (η ∧ η̄) ∈ R.
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2.2 Positive Currents

Instead of stating the definition, let us deduce what it needs to look like in order to be compatible with
the following requirement: we want integration over Cn−p ⊂ Cn to define a positive current. Suppose
η =

∑
|I|=p φIdz?I and abbreviate φ = φ(n−p+1,...,n). Then the current by integration over Cn−p ×{0} is

T (η ∧ η̄) =

∫
Cn−p×{0}

φφ̄ dz1 ∧ · · · ∧ dzn−p ∧ dz̄1 ∧ · · · ∧ dz̄n−p

= (−1)
(n−p)(n−p−1)

2

∫
Cn−p×{0}

|φ|2 dz1 ∧ dz̄1 ∧ · · · ∧ dzn−p ∧ dz̄n−p

= (−1)
(n−p)(n−p−1)

2 (−2i)n−p
∫
Cn−p×{0}

|φ|2 dx1 ∧ dy1 ∧ · · · ∧ dxn−p ∧ dyn−p.

Thus, let us define a real (p, p)-current T to be positive if for any η ∈ Ωn−p,0c (Cn)

(−1)
(n−p)(n−p−1)

2 in−pT (η ∧ η̄) ≥ 0.

As before, let us check compatibility with smooth forms. A smooth (1, 1)-form

ψ = i

n∑
j,k=1

hj,kdzj ∧ dz̄k

is positive if the matrix with entries hj,k is positive definite at every point. The above formula with
T = Tψ, p = 1, and ω = η ∧ η̄ reads

Tψ(η ∧ η̄) = (−1)n−1+
n(n−1)

2 i

n∑
j,k=1

sign(j)sign(k)Thj,k(φj φ̄k),

where sign(j) is just (−1)j−1. Thus,

(−1)
(n−1)(n−2)

2 in−1Tψ(η ∧ η̄) = in
n∑

j,k=1

(−1)j+kThj,k(φj φ̄k)

= in
∫
Cn

 n∑
j,k=1

(−1)j+kφjhj,kφ̄k

 dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

= 2n
∫
Cn

 n∑
j,k=1

(−1)j+kφjhj,kφ̄k

 dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn.

This term is positive for any choice of functions φj if and only if the matrix with entries (−1)j+khj,k
is positive definite. This latter matrix is positive definite if and only if the matrix with entries hj,k is
positive definite. Thus, positivity of currents is (almost) compatible with positivity of forms. We say
“almost” because the definition of a positive current allows T (η ∧ η̄) = 0. Hence, Tψ is positive as a
current if and only if the coefficient matrix (hj,k)j,k is positive semi-definite. We may say that a real
(p, p)-current T is strictly positive if for any non-trivial η ∈ Ωn−p,0c (Cn)

(−1)
(n−p)(n−p−1)

2 in−pT (η ∧ η̄) > 0.

Then strictly positive smooth currents correspond exactly to positive smooth forms. However, for conve-
nience, we will slightly distance ourselves from the usual convention and also call a smooth form positive
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2.2 Positive Currents

if its associated current is positive (instead of strictly positive). Here is one last definition. A real lo-
cally integrable function ρ is said to be plurisubharmonic if the current i∂∂̄ρ is a positive current. Here,
∂∂̄ρ is differentation of ρ as a distribution. The ∂∂̄-Poincaré lemma shows how every closed positive
(1, 1)-current is realized as such i∂∂̄ρ.

Proposition 2.15 (∂∂̄-Poincaré lemma for currents). A closed positive (1, 1)-current T is locally of the
form

T = i∂∂̄ρ

for some real (necessarily plurisubharmonic) function ρ, which is unique up to adding the real part of a
holomorphic function.

Proof. Note that T being closed implies being both ∂- and ∂̄-closed. This follows from the assertion
that T is a real current. By the ∂̄-Poincaré lemma for currents, T is locally of the form −i∂̄S for some
current S, which must be of type (1, 0). Then ∂̄(∂S) = −∂∂̄S = −i∂T = 0, so the regularity result for
the ∂̄-operator for currents implies that ∂S is a holomorphic differential form. By the standard Poincaré
lemma, ∂S equals dω for some holomorphic 1-form ω. Define a new current S′ = S − ω, which satisfies
T = −i∂̄S′ because ∂̄ω = 0. Since also ∂S′ = 0, the ∂-Poincaré lemma for currents gives us a (0, 0)-
current R with S′ = ∂R locally. Note that, while (n, n)-currents are exactly distributions by definition,
we can also regard (0, 0)-currents as distributions since their input is exactly differential forms of top

degree. Hence, ρ = (R + R′)/2 = Re(R(φ)), where R′ is defined by R′(φ) = R(φ), is a real distribution.
It follows from all the different stages in the proof that

∂∂̄R = −∂̄∂R = −∂̄S′ = −iT,

∂∂̄R′(φ) = −R′(∂̄∂φ) = −R(∂∂̄φ) = ∂̄∂R(φ) = iT (φ) = −iT (φ).

This proves that i∂∂̄ρ = T . One can show that ρ actually is the distribution associated to a locally
integrable function. It remains to verify the uniqueness property. Suppose σ is another solution, T =
i∂∂̄σ. Note that ∂∂̄(σ − ρ) = 0 implies ∆(σ − ρ) = 0. Thus, σ − ρ is a harmonic function. However, for
a harmonic function it is well known that it is exactly the real part of a holomorphic function.

We call such a function ρ a potential of T . If we replace local integrability by smoothness, then a
plurisubharmonic function gives rise to a Kähler form. Conversely, the ∂∂̄-Poincaré lemma states that
any Kähler form admits a local smooth potential since smoothness is preserved throughout the proof.

2.2.2 The Poincaré Lelong equation

Let us now turn to a specific class of currents. Suppose M is a complex manifold and Z ⊂M an analytic
hypersurface. Denote by Z∗ the set of regular points in Z. Then Z induces a current TZ by integration
over Z∗.

Lemma 2.16. Let p denote the codimension of Z in M . Then

TZ : Ωn−p,n−pc (M)→ C, φ 7→
∫
Z∗

φ

is a closed positive (p, p)-current.

Proof. Let us begin by showing that it is closed. We will show that even locally the integral of a closed
form is always 0. Given a point in Z∗, take local coordinates z = (z1, . . . , zn) in some neighborhood U
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2.2 Positive Currents

such that the projection π sending z to the first n−p coordinates is a branched covering Z∗∩U → π(U),
branched over some hypersurface D ⊂ π(U). Denote by Dε a small ε-neighborhood of D in π(U) and set

Z∗ε = (Z∗ ∩ U) \ π−1(Dε).

Then by Stoke’s theorem, ∫
Z∗∩U

dφ = lim
ε→0

∫
Z∗ε

dφ = lim
ε→0

∫
∂π−1(Dε)

φ.

If we can show that the volume of ∂Dε tends to 0 as ε tends to 0, then the volume of ∂π−1(Dε) also
tends to 0 and we can conclude that TZ is a closed current. To this end, let Ds denote the set of
singular points of D and D1 = D \Ds. Similarly, define D2 = D1 \ (D1)s and so on. Then each Dj is
a submanifold of strictly smaller (real) dimension. In particular, the boundary of an ε-neighborhood Dj

ε

will have volume approaching 0 as we shrink ε. Since ∂Dε is contained in the countable union of the ∂Dj
ε ,

we are finished proving closedness. Finally, we need to prove positivity of TZ . It suffices to work in a
small open set since all input forms are compactly supported. Take coordinates such that Z∗ is the zero
set {zn−p+1 = · · · = zn = 0}. Then, locally, the current is just integration over Cn−p×{0}, for which we
already established positivity.

In order to find a potential of such a current, we first need a variation of the Cauchy integral formula.

Lemma 2.17. Suppose p is a polynomial in one variable with roots {wν}ν . Then we have the distribu-
tional equation

∂̄

(
1

2πi

p′(w)

p(w)
dw

)
=
∑
ν

δwν .

Proof. We begin by proving the lemma for p(w) = w − z. Take a test function φ ∈ C∞c (C). Away from
z ∈ C it holds that

d

(
φ

w − z
dw

)
=
∂φ

∂w̄

1

w − z
dw̄ ∧ dw

so that, by Stoke’s theorem, for any disk D around z and any smaller disk Dε ⊂ D of radius ε∫
∂Dε

φ

w − z
dw =

∫
∂D

φ

w − z
dw −

∫
D\Dε

∂φ

∂w̄

1

w − z
dw̄ ∧ dw.

The integral in the middle vanishes if we take D so large that its boundary does not intersect the support
of φ. The integral on the left becomes in polar coordinates∫

∂Dε

φ

w − z
dw =

∫ 2π

0

φ(z + εeiθ)idθ
ε→0−−−→ 2πiφ(z).

Next, we use dw ∧ dw̄ = −2irdr ∧ dθ and boundedness of ∂φ(w)
∂w̄ by some constant c to conclude∣∣∣∣∫

Dε

∂φ

∂w̄

1

w − z
dw ∧ dw̄

∣∣∣∣ ≤ 2c

∫
Dε

|dr ∧ dθ| ε→0−−−→ 0.

This proves the special case

2πiφ(z) = −
∫
D

∂φ

∂w̄

1

w − z
dw̄ ∧ dw = ∂̄

(
1

w − z
dw

)
(φ).
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2.2 Positive Currents

We can write a general polynomial p(w) as the product of the terms (w − wν) to find

∂̄

(
1

2πi

p′(w)

p(w)
dw

)
=
∑
ν

∂̄

(
1

2πi

1

w − wν
dw

)
=
∑
ν

δwν .

Proposition 2.18 (Poincaré Lelong equation). Suppose a holomorphic function f on a complex manifold
has divisor the analytic hypersurface Z. Then, as currents,

TZ =
i

π
∂∂̄ log |f |.

Proof. Given p ∈ Z, we can pick local coordinates z such that f(z) becomes the product of a Weierstrass
polynomial g(z) in zn and a non-vanishing holomorphic function h(z). This is possible by the Weierstrass
Preparation Theorem, see [3, p. 8]. Since h is holomorphic and non-vanishing, we get

∂∂̄ log |f | = ∂∂̄ log |g|+ 1

2

(
∂∂̄ log h+ ∂∂̄ log h̄

)
= ∂∂̄ log |g|.

Thus, we may neglect h and assume f = g. Take a test function φ. Since f remains a Weierstrass
polynomial when we rescale the zn coordinate by a linear combination of the other coordinates (z′n =
γ1z1 + · · ·+ γn−1zn−1 + zn), we may assume that the test function is of the form

φ(z) = α(z)dz1 ∧ · · · ∧ dzn−1 ∧ dz̄1 ∧ · · · ∧ dz̄n−1.

By renaming w = zn and z = (z1, . . . , zn−1) we can rewrite this nicely as

φ(z, w) = α(z, w)dz ∧ dz̄,
f(z, w) = wn + an−1(z)wn−1 + · · ·+ a0(z).

We will write f ′ for the w-derivative of f . We can use Stoke’s theorem on the w coordinate,

dw

(
log |f |2 ∂α

∂w̄
dw̄

)
=

(
f ′

f
dw +

f ′

f
dw̄

)
∧
(
∂α

∂w̄
dw̄

)
+ log |f |2 ∂2α

∂w∂w̄
dw ∧ dw̄

=
f ′

f

∂α

∂w̄
dw ∧ dw̄ + 2 log |f | ∂

2α

∂w∂w̄
dw ∧ dw̄,

and that φ is compactly supported so that the boundary term in Stoke’s formula vanishes to find(
i

π
∂∂̄ log |f |

)
(φ) = − i

π

∫ ∫
log |f | ∂

2α

∂w∂w̄
dw̄ ∧ dw ∧ dz ∧ dz̄

=
i

2π

∫ (∫
f ′

f

∂α

∂w̄
dw̄ ∧ dw

)
dz ∧ dz̄.

We can evaluate the inner integral with the previous lemma to deduce(
i

π
∂∂̄ log |f |

)
(φ) =

∫ ∑
ν

α(z, wν(z))dz ∧ dz̄,

where wν(z) are the zeros of the polynomial f(z, ·). As the zero set of f is exactly Z by hypothesis, this
last integral is integration of φ over Z.
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2.2 Positive Currents

2.2.3 The Lelong Number

Also due to Lelong is the Lelong number, which we construct next. Let B(r) denote the ball of radius r
around the origin in Cn and B(r,R) the annulus with inner radius r and outer radius R. Set

ω =
i

2
∂∂̄||z||2 = i

n∑
j=1

dzj ∧ dz̄j ,

Ω =
i

2π
∂∂̄ log ||z||2.

Given a smooth (p, p)-current Tψ, define

Θ(Tψ, r) =
1

r2(n−p)

∫
B(r)

ψ ∧ ωn−p.

For an arbitrary (p, p)-current T , use the smoothing to extend Θ to T ,

Θ(T, r) = lim sup
ε→0

Θ(Tε, r).

If T is a positive current, then Θ(T, r) is always a non-negative real number. Indeed, by construction,
the smoothing of a positive current remains positive. Therefore, we only need to verify Θ(Tψ, r) ≥ 0 for
positive smooth forms ψ. This is the special case Ψ = ω in the lemma below.

Lemma 2.19. If ψ is a positive smooth (p, p)-form and Ψ a positive smooth (1, 1)-form, then the integral
of ψ ∧Ψn−p over any domain is always a non-negative real number.

Proof. Such an integral is certainly a real number as both ψ and Ψ are real forms. It suffices to show
that ψ ∧Ψ is positive, because then we iteratively conclude that ψ ∧Ψn−p is positive and the definition
of positivity for p = n reads Tψ∧Ψn−p(|φ|2) ≥ 0 for any compactly supported smooth function φ. As Ψ is
positive, its coefficient matrix is diagonalizable with only non-negative eigenvalues and we may perform
a change of coordinates in which Ψ takes the form

Ψ = i

n∑
j=1

αjdwj ∧ dw̄j

with functions αj taking values in R≥0. Take a (n− p− 1, 0)-test form η and set ηj =
√
αjdwj ∧ η. We

simply calculate

Tψ∧Ψ(η ∧ η̄) = (−1)n−p−1i

n∑
j=1

Tψ(ηj ∧ η̄j)

and, subsequently, by positivity of ψ

(−1)
(n−p−1)(n−p−2)

2 in−p−1Tψ∧Ψ(η ∧ η̄) =

n∑
j=1

(−1)
(n−p−1)(n−p)

2 in−pTψ(ηj ∧ η̄j) ≥ 0.

We may wish to take the limit to get rid of the r-dependence of our newly defined non-negative real
number Θ(T, r). The next lemma enables us to do so.

Lemma 2.20. Suppose T is a closed positive (p, p)-current. Then Θ(T, r) decreases as r decreases.
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2.2 Positive Currents

Proof. It suffices to prove the lemma for smooth currents. Assume T = Tψ. ψ being closed implies(
i

2

)n−p
d
(
ψ ∧ ∂̄||z||2 ∧

(
∂∂̄||z||2

)n−p−1
)

= ψ ∧ ωn−p.

Thus, by Stoke’s theorem,

Θ(Tψ, r) =
1

r2(n−p)

(
i

2

)n−p ∫
∂B(r)

ψ ∧ ∂̄||z||2 ∧
(
∂∂̄||z||2

)n−p−1
.

Another easy computation allows us to substitute a logarithm into the integral,

∂̄ log ||z||2 =
1

||z||2
∂̄||z||2 z∈∂B(r)

=
1

r2
∂̄||z||2

and, hence,

∂̄ log ||z||2 ∧
(
∂∂̄ log ||z||2

)n−p−1
=

1

r2(n−p) ∂̄||z||
2 ∧
(
∂∂̄||z||2

)n−p−1

Lastly, since (
i

2

)n−p
d
(
∂̄ log ||z||2 ∧

(
∂∂̄ log ||z||2

)n−p−1
)

= πn−pΩn−p,

we can use Stoke’s theorem again to find for r < R

Θ(Tψ, R)−Θ(Tψ, r) =

(
i

2

)n−p ∫
∂B(r,R)

ψ ∧ ∂̄ log ||z||2 ∧
(
∂∂̄ log ||z||2

)n−p−1

= πn−p
∫
B(r,R)

ψ ∧ Ωn−p.

Since Tψ is a positive current, this integral must be non-negative by lemma 2.19. Indeed, Ω is positive
as its coefficient matrix has entries

hj,k =
1

||z||2
δj,k −

z̄jzk
||z||4

and, therefore, has eigenvalues 0 (with multiplicity 1) and 1/||z||2 (with multiplicity n− 1).

We can now define the Lelong number of a closed positive current T ∈ Cp,p(Cn) as

Θ(T ) =
1

πn−p
lim
r→0

Θ(T, r).

Clearly, if p ≥ 1 and T = Tψ is a smooth current, then

Θ(T ) ≤ const · lim
r→0

1

r2(n−p) vol(B(r)) = 0.

For currents on a complex manifold, we can define a point-wise Lelong number Θ(T, p) by taking a chart
centered at p.
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2.3 Application: Intersection of Analytic Subvarieties

Currents can also be used to compute intersection numbers. Suppose M is an oriented, compact, complex
manifold and V and W are two analytic subvarieties of dimensions p and n − p, respectively. The
intersection theory can be done in the cohomology of currents simply by “pulling it back” from the
Dolbeault cohomology via the isomorphism from theorem 2.9. We will prove the following result:

Theorem 2.21. Suppose V and W intersect in only finitely many points. The intersection number of V
and W inside M is exactly the sum of the intersection multiplicities of each intersection point,

V ·W =
∑

p∈V ∩W
mp(V,W ).

Proof. Suppose first that W is smooth. We may assume that V ∩W consists of a single point p0. Take
coordinates (z, w) = (z1, . . . , zp, w1, . . . , wn−p) in a neighborhood U of p0 such that W is given by {z = 0}
and the projection (z, w) 7→ z is a finite cover. Let S be the (p, p−1)-current on U given by the variation
of the Bochner-Martinelli form (variation in the sense that S inherits trivial w-coordinate dependence)

S = const ·
p∑
j=1

(−1)j
(
∂

∂zj

1

|z|2n−2

)
dz̄1 ∧ . . . d̂z̄j ∧ · · · ∧ dz̄p ∧ dz1 ∧ · · · ∧ dzp.

Then dS = ∂̄S is integration over {z = 0}, i.e. equals TW |U , where TW is the current associated to W
by integration. Let U ′ denote a smaller neighborhood. Pick some bump function ρ that is 1 on U ′ with
support in U . Then the current

T ′ = TW − d (ρS)

vanishes in U ′ and, hence, is smooth on V . Since it lies in the same cohomology class as TW , we recover
the intersection number (this follows from the analogue result we know for Dolbeault cohomology and
intersection numbers)

V ·W =

∫
V

T ′.

Abbreviate Vε = V ∩ Uε, where Uε is {||z|| < ε, ||w|| < ε} ⊂ U . Using that T ′ vanishes in U ′ and that
TW vanishes in V \ Vε, we find with the help of Stoke’s theorem

V ·W = lim
ε→0

∫
V \Vε

T ′ = − lim
ε→0

∫
V \Vε

d (ρS) = lim
ε→0

∫
∂Vε

ρS = lim
ε→0

∫
∂Vε

S.

The projection Vε → {||z|| < ε, w = 0} is a mp0(V,W )-sheeted covering and, hence,

V ·W = lim
ε→0

∫
∂Vε

S = mp0(V,W ) · lim
ε→0

∫
∂Bε

k̃BM = mp0(V,W ) · lim
ε→0

∫
Bε

δ = mp0(V,W ).

Here, after the projection we end up with the usual Bochner-Martinelli form (in p coordinates) whose
differential is the dirac delta distribution, i.e. we forget that S is defined for w coordinates. This proves
the theorem for the case in which W is smooth. For the general case, we use the following trick. Let ∆
denote the diagonal in M ×M . It is a standard result that V ·W = (V ×W ) · ∆. As the diagonal is
smooth, we entered the first case and obtain

V ·W =
∑

p∈V ∩W
m(p,p)(V ×W,∆) =

∑
p∈V ∩W

mp(V,W ).
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3 The Proper Mapping Theorem

In this chapter, we mean to prove the Proper Mapping Theorem, which can be stated as follows.

Theorem 3.1 (Proper Mapping Theorem). Let M and N be complex manifolds and V ⊂M an analytic
subvariety. Suppose we are given a holomorphic map f : M → N such that its restriction to V is proper.
Then f(V ) is an analytic subvariety of N of dimension at most dim(V ).

We will prove this theorem under an additional technical hypothesis that is satisfied in most cases,
namely:

Theorem 3.2 (Proper Mapping Theorem, version 2). Let M , N , V , and f be as above. Assume that
for every regular point p ∈ V and every k-dimensional plane Λp ⊂ TpV , k ≤ dim(V ), there exists a k-
dimensional analytic subvariety Z of V with tangent space Λp at p. Then f(V ) is an analytic subvariety
of N of dimension at most dim(V ).

Before we can prove the Proper Mapping Theorem, we need to recapture some notions from algebraic
geometry. We begin by introducing Divisors and Line Bundles and study their interplay.

3.1 Divisors and Line Bundles

Divisors

Let M be a complex manifold and denote by V the set of irreducible analytic hypersurfaces in M . A
divisor D on M is a formal sum (over Z)

D =
∑
V ∈V

αV V

that is locally finite in the sense that for any point p ∈M there exists a small neighborhood U such that
for all but finitely many V ∈ V intersecting U we have αV = 0. We denote by Div(M) the set of all
divisors on M . Given an analytic hypersurface W we can associate to it the divisor defined by αV = 1 if
V is an irreducible component of W and αV = 0 otherwise. We can also associate divisors to functions
on M . Suppose f is a holomorphic function defined in a neighborhood of a point p ∈ M . Given V ∈ V
containing p, take a locally defining function g for V near p. Since the ring Op of holomorphic functions
near a given point p is a unique factorization domain and since g is irreducible, there exists some integer
a ≥ 0 and a holomorphic function h with f = gah near p. We can take the largest possible such a (i.e.
by requiring g and h to be relatively prime in Op) and call it the order of f along V at p.

Lemma 3.3. With V and f as above, the order of f along V at p is well-defined in that it is independent
of the choice of g. Moreover, it is independent of the point p ∈ V .

Proof. The first statement is immediate: Suppose f = ga11 h1 = ga22 h2 with a1 and a2 maximal. We
can also write g2 = gb1h3 so that f = ga2+b

1 ha23 h2. a1 being maximal implies a1 ≥ a2 + b ≥ a2 and, by
symmetry, a2 ≥ a1. Thus, the order is well-defined. For the second statement, it suffices to show that
the order of f along V at p remains the same in an open neighborhood of p since V is irreducible. The
definition of the order required g and h to be relatively prime in Op. In order to conclude, we will show
that such elements remain relatively prime in Oq, where q is any point close to p. As before, by taking
suitable coordinates, we may assume that each function is the product of a Weierstrass polynomial in the
last coordinate zn and a non-vanishing holomorphic function. Write g = P1k1 and h = P2k2. Suppose j
is a divisor of both g and h in Oq. g and h being relatively prime implies that P1 and P2 are relatively
prime in the ring of Weierstrass polynomials. Since the latter is a unique factorization domain, we can
take a linear combination of P1 and P2 to obtain a holomorphic function that depends only on the first
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3.1 Divisors and Line Bundles

n − 1 coordinates. As k1 and k2 are non-vanishing, we also get a linear combination of g and h that
depends only on the first n−1 coordinates. But then j is also a divisor of this function and can therefore
itself depend only on the first n− 1 coordinates. If g and h do not have a common zero in the domain of
j, then g and h are obviously relatively prime. Otherwise, j also has a zero w. Thus, j(w0, . . . , wn−1, zn)
is constantly zero in zn implying that also P1(w0, . . . , wn−1, zn) and P2(w0, . . . , wn−1, zn) are constantly
zero in zn. Hence, P1 and P2 are the zero polynomial. In particular, f is constantly zero.

By the lemma, we can therefore speak of the order of f along V , which we denote by ordV (f). If we
do not begin with a holomorphic function but instead with a meromorphic function f = f1/f2, then we
define ordV (f) = ordV (f1)− ordV (f2). Using the order, we can associate to every meromorphic function
f on M a divisor by

(f) =
∑
V ∈V

ordV (f)V.

For f = f1/f2 with f1 and f2 relatively prime, we call (f)0 = (f1) the divisor of zeros and (f)∞ = (f2)
the divisor of poles. Note that locally any divisor can be seen as the divisor of a meromorphic function.
Indeed, in a neighborhood U of a given point only finitely many αV1

, . . . , αVm are non-zero and if gj
denotes a locally defining function of Vj , then

(
g
αV1
1 · · · gαVmm

)
=

m∑
j=1

αVjVj =
∑

V ∈V, V ∩U 6=∅

αV V.

However, this product might not give rise to a well-defined global function. Facing such a local-global
problem, sheaf theory comes to mind. The divisor associated to a function remains unchanged after mul-
tiplication with a non-zero holomorphic function. Moreover, by multiplying with non-zero holomorphic
functions, the above products agree on the intersection of their domains. Thus, a divisor is, in fact,
a global section of the quotient sheaf M∗/O∗, where M∗ is the multiplicative sheaf of meromorphic
functions not identically zero and O∗ is the multiplicative sheaf of non-zero holomorphic functions. Con-
versely, given an element in M∗/O∗(M), we get an associated divisor. In particular, by proposition 1.6,
we have isomorphisms

Div(M) ∼=M∗/O∗(M) ∼= Ȟ0(M,M∗/O∗).

Line Bundles

A line bundle on M is a smooth, complex, rank 1, vector bundle on M . In this section, we are interested
in holomorphic line bundles, that is line bundles π : L→M where L admits a complex manifold structure
and the trivialization maps are biholomorphic. Recall that this involves an open cover U = {Uα}α of M ,
local trivializations

φα : π−1(Uα)→ Uα × C,

and corresponding transition functions

gα,β : Uα ∩ Uβ → GL(1,C) ∼= C∗, z 7→
(
φα ◦ φ−1

β

) ∣∣∣
{z}×C

.

Note that 1/gα,β = gβ,α. Suppose we are given another trivialization φ̃α over the same open cover. Since

on each fibre φα and φ̃α are linear isomorphisms to C, there exists a function fα : Uα → C∗ with

φ̃α|π−1(z) = fα(z) · φα|π−1(z)
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3.2 The Levi Extension Theorem

for every z ∈ Uα. This function is holomorphic since φα and φ̃α are. Thus, for the transition functions
we get g̃α,β = (fα/fβ) · gα,β . Conversely, any collection of maps of the form fα · φα, with fα : Uα →
C∗ holomorphic, defines a trivialization of the same line bundle L → M . Hence, transition functions
(gα,β)(α,β) and (g̃α,β)(α,β) give rise to the same line bundle if and only if g̃α,β = (fα/fβ) · gα,β for some
collection of holomorphic maps fα : Uα → C∗. We can also cast holomorpic line bundles into the light of
sheaf theory. Given a line bundle as above, note that σ = (gα,β)(α,β) defines an element in the cochain
complex C1(U,O∗). Moreover,

(δσ)(α,β,γ) = gβ,γ ·
1

gα,γ
· gα,β = 1,

so σ is a cocycle. Conversely, any cocycle σ = (gα,β)(α,β) ∈ C1(U,O∗) characterizes a unique holomorphic
line bundle. Furthermore, σ and σ̃ define the same cohomology class in H1(U,O∗) if and only if σ · σ̃−1 =
(gα,β/g̃α,β)(α,β) equals a coboundary δτ , for some τ = (fα)α ∈ C0(U,O∗). This is the case if and only if
gα,β/g̃α,β = fβ/fα on every Uα ∩ Uβ and we have just seen that this holds if and only if σ and σ̃ define
the same line bundle. We conclude that there is an identification of the set of holomorphic line bundles
on M modeled on the open cover U with the cohomology group H1(U,O∗). By taking finer and finer
coverings, we obtain an identification of the set of holmorphic line bundles, which we denote by LBh(M),
on M with the Čheck cohomology group Ȟ1(M,O∗). Under this identification, LBh(M) obtains a group
structure, which corresponds to taking the tensor product of two bundles as the group operation and
taking the dual bundle as the inverse element.
Next, we want to show that any divisor comes with an associated line bundle. As discussed above, a given
divisor D always has a local representation by a meromorphic function. Take an open cover U = {Uα}α
such that D = (fα) in Uα with fα a meromorphic function on Uα. Since fα is given by powers of locally
defining maps of elements V ∈ V, any quotient gα,β = fα/fβ is an element of O∗(Uα ∩ Uβ). Clearly,
(gα,β)(α,β) is a cocycle and, hence, gives rise to some line bundle. If we had taken different representatives

f̃α of the divisor D, then hα = f̃α/fα is in O∗(Uα) and, hence, g̃α,β = (hα/hβ) · gα,β shows that the
different representatives give rise to the same line bundle. Thus, we may write [D] for the line bundle
associated to a divisor. Note that, by additivity of the order of a map along a hypersurface, if fα and f̃α
are local representations of divisors D and D̃, respectively, then D+ D̃ has local representations fα · f̃α.
Therefore, the map that sends a divisor to its associated line bundle is, in fact, a group homomorphism
from Div(M) to LBh(M). In the special case where D = (f) is associated to a meromorphic function on
M , its local representation over any open cover is given by the restrictions of the map f . In particular,
the associated line bundle of (f) is trivial. Conversely, if [D] is trivial and D is represented by fα, then
there are functions hα ∈ O∗(Uα) with fα/fβ = gα,β = hα/hβ . Then the local sections fα/hα = fβ/hβ
glue to a global section f ∈M∗(M) and D = (f). This establishes the following proposition.

Proposition 3.4. The line bundle associated to a divisor is trivial if and only if the divisor is the divisor
associated to a meromorphic function.

3.2 The Levi Extension Theorem

The most important result we need to prove the Proper Mapping Theorem is the Levi Extension Theorem,
which allows us to extend meromorphic functions over subvarieties. We begin with the local version about
extending subvarieties.

Theorem 3.5 (Levi Extension Theorem, local version). Let V be an analytic subvariety in the poly-
cylinder ∆n ⊂ Cn, n ≥ 2, of (complex) codimension at least 2, and let D ⊂ ∆n \ V be a subvariety of
(complex) codimension 1. Then the closure of D in ∆n is analytic.

Here is one preliminary result we need for the proof. Let ∆ denote a polycylinder in C and ∆∗ that
same polycylinder punctured in the origin. Define ∆′ = ∆∗ ×∆.
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3.2 The Levi Extension Theorem

Lemma 3.6. The cohomlogy group Ȟ1(∆′,O∗) vanishes.

Proof. The exponential sequence of sheaves

0→ Z∆′ ↪→ O
exp−−→ O∗ → 0

induces a long exact sequence in cohomology

· · · → Ȟ1(∆′,O)→ Ȟ1(∆′,O∗)→ Ȟ2(∆′,Z∆′)→ · · · .

The term on the right is just singular cohomology with coefficients in Z, which vanishes by the Künneth
formula. Thus, it suffices to show that Ȟ1(∆′,O) vanishes. By the Dolbeault theorem, this cohomology
group is isomorphic to H0,1

∂̄
(∆′). Let B(ε, r) denote the annulus around the origin in C and take a smooth

bump function ρ that is 1 on B(ε, r) and 0 close to the origin. Abbreviate ∆′(ε, r) = B(ε, r)×∆. Suppose
we are given a ∂̄-closed (0, 1)-form ψ = h1dz̄1 + h2dz̄2 on ∆′. Define a function on ∆′(0, r) by

f(z1, z2) =
1

2πi

∫
|w|≤r

ρ(w)h1(w, z2)

w − z1
dw ∧ dw̄.

By the Cauchy-type lemma 2.17, we then have ∂
∂z̄1

f(z) = ρ(z1)h1(z) and, hence,

ρψ − ∂̄f =

(
ρ(z1)h2(z)− ∂

∂z̄2
f(z)

)
dz̄2.

Denote the function in the brackets by φ. Since ψ is ∂̄-closed, the function φ is holomorphic in z1 in
∆′(ε, r). Thus, it has a power series expansion in ∆′(ε, r) in the first variable,

φ(z) =
∑
k≥0

ak(z2)zk1 .

Now we isolated the z1-dependence and obtained forms ak(z2)dz̄2 in H0,1

∂̄
(∆) = 0. Thus, we find functions

fk on ∆ whose anti-holomorphic derivatives are the functions ak. Consequently,

ψ − ∂̄f =
∑
k≥0

zk1
∂

∂z̄2
fk(z2)dz̄2 = ∂̄

∑
k≥0

zk1fk(z2)


on ∆′(ε, r). Now take a sequence (εm, rm)→ (0, 1). We have proved that we can find a function gm with
∂̄gm = ψ on ∆′(εm, rm). We can also pick a function α with ∂̄α = ψ on ∆′(εm+1, rm+1). Then gm −α is
holomorphic in ∆′(εm, rm) and, hence, has a power series expansion. Truncate the expansion to obtain
a polynomial β with

sup
∆′(εm−1,rm−1)

|(gm − α)− β| < 1

2m
.

Then define gm+1 = α + β. This way, ∂̄gm+1 = ψ in ∆′(εm+1, rm+1) and |gm+1 − gm| is uniformly
bounded in ∆′(εm−1, rm−1) by 2−m. In particular, the limit g of gm exists and is a solution to ∂̄g = ψ in
∆′. This finishes the lemma.

Note that the arguments in the proof of the lemma still work for polycylinder of larger dimensions.
In particular, Ȟ1(C∗ × Cn,O) is always zero for any n ≥ 1.
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Proof of theorem 3.5. We first tend to the simplified case where n = 2 and V is the origin. We wish to
show that D∗ = D ∩∆′ has a globally defining function. Recall that we identified Ȟ1(∆′,O∗) with the
set of holomorphic line bundles on ∆′. The lemma tells us that there are only trivial line bundles. By
proposition 3.4, D∗ = D∩∆′ is the divisor of some meromorphic function h on ∆′. This function actually
cannot have poles since D is a subvariety. Thus, h is holomorphic. Since D has codimension 1, we may
assume (up to rotating the axes) that it does not contain {z1 = 0}. Then D∗ and {z1 = 0} intersect only
in finitely many points and we can find δ and ε such that the set {|z1| ≤ δ, |z2| = ε} does not intersect
D. Thus, for any z = (z1, z2) with 0 < |z1| ≤ δ, the “winding number”

1

2πi

∫
|z2|=ε

dh(z1, z2)

h(z1, z2)

is well-defined. Since it is integer-valued and depends continuously on z1, it is constant in z1. Let d ∈ Z de-
note its value. Note that the zeros are simple and, therefore, there are d-many zeroes {z1, z2,ν(z1)}1≤ν≤d,
for each z1. The sum

φj(z1) =

d∑
ν=1

z2,ν(z1)j ,

where j ≥ 0, is holomorphic in z1 since we can use the Residue theorem to write it as the integral

1

2πi

∫
|z2|=ε

zj2
dh(z1, z2)

h(z1, z2)
.

Boundedness of the functions φj implies that the origin is a removable singularity. Let

σm(z1) =
∑

1≤k1<···<km≤d

m∏
i=1

z2,ki(z1),

1 ≤ m ≤ d, be the elementary symmetric polynomials for z2,1(z1), . . . , z2,d(z1). Set

F (z1, z2) = zd2 − σ1(z1)zd−1
2 + · · ·+ (−1)dσd(z1) =

d∏
ν=1

(z2 − z2,ν(z1)).

Since we can rewrite the σ1, . . . , σd as polynomial expressions in φ1, . . . , φd, the function F is holomorphic
and extends to {z1 = 0}. As the roots of F for z1 6= 0 are exactly (z1, z2,ν(z1)), 1 ≤ ν ≤ d, the divisor
of F is exactly D. This finishes the special case n = 2 and V = {0}. If n is arbitrary and V a linear
subspace of Cn, then the argument is analogous. Since the problem is local, this proves the theorem for
regular varieties V . Fortunately, this is sufficient: by the above, we can extend D to ∆ \ Vs, where Vs
denotes the subvariety of V of singular points. By applying the argument to Vs, we can also extend D
to ∆ \ (Vs)s. Continuing this procedure yields the theorem.

The global version about meromorphic functions follows easily from the local version once we observed
Hartog’s theorem, which displays one of the main strengths of multi-variable complex analysis as opposed
to complex analysis of one variable.

Theorem 3.7 (Hartog). Let U ⊂ Cn be a polycylinder, n ≥ 2, and V ⊂ Cn a subvariety of (complex)
codimension at least 2. Any holomorphic function on U \ V extends to a holomorphic function on U .

Proof. As the codimension of V in U is at least 2, there are some coordinates for which {|zn| = r} ⊂ ∂U
does not intersect V . Given a holomorphic function f on U \ V , simply define

F (z1, . . . , zn) =
1

2πi

∫
|wn|=r

f(z1, . . . , zn−1, wn)

wn − zn
dwn,

which equals f on U \ V by Cauchy’s formula.
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Theorem 3.8 (Levi Extension Theorem, global version). Let M be a complex manifold of (complex)
dimension at least 2 and V ⊂ M an analytic subvariety of (complex) codimension at least 2. Suppose f
is a meromorphic function defined on M \ V . Then f extends to a meromorphic function on M .

Proof. Consider the polar divisor (f)∞. By the local version of the Levi Extension Theorem, its closure
is an analytic subvariety of M . Given a point p with a small neighborhood U , take a locally defining
function g of this subvariety. Then the product f ·g is holomorphic in U \V by construction. By Hartog’s
theorem, f ·g extends to a holomorphic function h in U . A meromorphic extension of f is therefore given
by h/g.

3.3 The Proof of the Proper Mapping Theorem

We will prove the theorem by induction on m = dim(V ). If m = 0, V is just a collection of isolated
points. Then f(V ) also consists of isolated points as f |V is proper. Now assume that the theorem is
proved for all analytic subvarieties of dimension less than m. We will first prove a special case and argue
afterwards how to reduce the general theorem to this instant.

Step 1. Suppose N = ∆ is the polycylinder in Cm+1. Define a (1, 1)-current by integration of pullback,

S : Ωm,mc (∆)→ C, S(φ) =

∫
V ∗
f∗φ.

This is well-defined as f is proper. Moreover, the appearance of the pullback does not invalidate the
arguments in the proof of lemma 2.16 (that integration over a subvariety defines a closed positive current),
so the current S is also closed and positive.

A posteriori, once the Proper Mapping Theorem is proved, this current must be the one associated to
the subvariety f(V ) (up to a constant factor, namely the degree of f). Here is the heart of of the proof:

Step 2. Suppose V is irreducible and N = ∆ is the polycylinder in Cm+1. Furthermore, assume that f
has maximal rank m at some point in V ∗. Then f(V ) is an analytic subvariety in ∆ of dimension m.

Proof. Let W ⊂ V denote the union of the set of singular points and the set of those points where f does
not have maximal rank. Then W is an analytic subvariety of V of at least one (complex) dimension less.
Hence, by the induction hypothesis, f(W ) is an analytic subvariety and its dimension is at most m− 1.
At any point p ∈ V \W , f has maximal rank and, hence, is locally invertible with holomorphic inverse.
The image of a small neighborhood of p will therefore be an open subset of an analytic subvariety of
dimension m. Thus, both f(V \W ) and f(W ) are analytic subvarieties and we must show that their
union defines a single subvariety. Let us inspect a neighborhood U of a point lying in f(W ). We can
apply the ∂∂̄-Poincaré lemma to the current from step 1 to find that S = i∂∂̄ρ in U for some real function
ρ. Given a point q ∈ f(V \W ) ∩ U , take a locally defining holomorphic function h of the latter. By
the Poincaré Lelong equation, the current T associated to the subvariety f(V \W ) is locally equal to
i
π∂∂̄ log |h|. If k0 denotes the degree of the map f , then the degree theorem for integration yields near q

0 = S(φ)− k0T (φ) = i∂∂̄

(
ρ− k0

π
log |h|

)
.

Thus, ρ− k0
π log |h| is the real part <(g) of a holomorphic function g in a neighborhood of q. Note that

d log h = ∂ log |h|2 since h is holomorphic. Thus, we get the equality of derivatives

dg = 2∂<(g) = 2∂ρ− k0

π
d log h.
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In particular, ∂ρ is closed in U \ f(V ). The set f(V \ W ) is exactly the set of poles of ∂ρ as the
appearance of log h shows. By the regularity of the ∂̄-operator, ∂ρ is holomorphic in U \ f(V ). Thus,
its coefficient functions are meromorphic functions on U \ f(W ). As f(W ) has (complex) dimension
at least two smaller than ∆, the Levi Extension Theorem is applicable and ∂ρ extends to U . Then
f(V \W ) = f(V \W ) ∪ f(W ) is the polar divisor of ∂ρ, so the proof is finished.

It remains to perform the reductions. We will begin by justifying the additional hypothesis we put
on the analytic subvariety V and on the function f .

Step 3. It suffices to prove the Proper Mapping Theorem 3.2 for irreducible V and for functions f for
which there exists a smooth point at which f has maximal rank m = dim(V ).

Proof. Since f |V is proper, given any compact subset of N only finitely many components V1, . . . , Vr of
V will intersect its preimage. If we prove that f(V1), . . . , f(Vr) are analytic subvarieties, then (locally)
f(V ) is a finite union of analytic subvarieties, hence itself an analytic subvariety. Therefore, we may
assume that V is irreducible. Now pick a smooth point p0 where f has maximal rank k ≤ m. If k = m,
we are done. Otherwise, the additional technical hypothesis in theorem 3.2 provides us with an analytic
subvariety Z ⊂ V with tangent space at p0 the plane on which f has full rank. The lemma is proved if
we show f(Z) = f(V ). We may assume that f |Z has full rank in a neighborhood of p0. By the implicit
function theorem, there is a m − k dimensional submanifold of V (the graph of the implicit function)
going through p0 on which f has value f(p0). Similarly, there are (m − k)-submanifolds associated to
points p in Z near p0 that get mapped to f(p). These submanifolds foliate an open subset W of V , which
satisfies f(W ) = f(W ∩Z). We conclude this step with the identity principle and irreducibility of V .

Next, we turn to the additional hypothesis on N . As the question of whether f(V ) is an analytic
subvariety of N is a local question, this reduces us to the case in which N is a polycylinder in Cn. We
need to ensure that its dimension can be taken to be n = m+ 1. The key step to this is:

Step 4. Suppose N is a polycylinder in Cn and π : N → ∆m+1 is a projection onto a polycylinder of
smaller dimension. Then the restriction of π to f(V ) is proper.

Proof. For every w ∈ ∆, let Λw denote the hyperplane {z1 = w} in Cn. We get a family of new
subvarieties of V of lesser dimension by Vw = V ∩ f−1(Λw). By the induction hypothesis, each f(Vw) is
an analytic subvariety of dimension at most m− 1. As subvarieties are closed subsets, the projection of
each f(Vw) onto ∆m is proper. Now given a compact subset K of ∆m+1, denote by Kw the intersection
({w} ×∆m) ∩K. Let K1 ⊂ ∆ denote the compact subset obtained from K by projecting onto the first
coordinate. Then (

π|f(V )

)−1
(K) =

⋃
w∈K1

(
π|f(Vw)

)−1
(Kw)

and each set in the union is compact. In fact, the union itself is compact since the sets in the union are
contained in parallel hyperplanes. Hence, π|f(V ) is proper.

We have gathered all the necessary ingredients. All that is left to do is fit the pieces together.

Step 5. The Proper Mapping Theorem holds in full generality.

Proof. As discussed, we may assume that N is a polycylinder in Cn. By the last step, the composition
π ◦ f : N → ∆m+1 is proper for any choice of smaller polycylinder ∆m+1 ⊂ N . By steps 2 and 3, such
π ◦f(V ) is an analytic subvariety of dimension at most m. Note that we only need finitely many different
choices of such polycylinder to reconstruct f(V ) from the various π ◦ f(V ). In particular, collecting
locally defining functions of each π ◦f(V ) and composing them with the corresponding projection gives a
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3.3 The Proof of the Proper Mapping Theorem

set of locally defining functions for f(V ). Thus, f(V ) is itself an analytic subvariety. If it had dimension
greater than m, then we could pick an m + 1-dimensional polycylinder such that the projection onto it
could not have dimension at most m. This finishes the proof of the Proper Mapping Theorem.
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