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Introduction

Sometimes, I encounter results on approximation capacities of Rectified Linear Unit (ReLU)-networks with an
accompanying statement that either the results can be shown with analogous arguments for other activation
functions or that the results do not work for other activation functions. In this short note, I show that
any approximation result concerning ReLU-networks automatically translates to σ-networks for most other
common activation functions σ. This holds for uniform approximation on compact sets and, hence, for any
weaker notion of approximation such as Lp-approximation on compact sets, which appear frequently. This
observation implies on the one hand that σ-networks are, in a sense, superior to ReLU-networks in terms of
theoretical approximation capacities (of course, this does not take into account generalization properties or
suitability for training). On the other hand, when setting out to prove an approximation result for neural
networks, it suffices to derive proofs for ReLU-networks since we get the same result for other activation
functions for free.

The claimed result follows immediately from the fact that the ReLU function itself can be approximated
to arbitrary accuracy on any compact set by a σ-network, whose architecture is independent of the accuracy
and the compact set. For some activation functions, such an approximation has been derived in [Mhaskar
and Micchelli, 1992] and [Mhaskar, 1993]. However, it seems that this observation and its consequences went
by largely unnoticed. In those earlier works, it served as an intermediate step in a longer elaborate proof. In
addition, ReLU had not been popular as an activation function at the time.

Result

An architecture A is a vector of natural numbers, encoding the number of neurons in each layer. The first
and the last layer are called input and output layer. Given an activation function σ : R → R, a σ-network
with architecture A = (a0, . . . , aD) is a function of the form AD ◦ σ ◦ AD−1 ◦ σ ◦ · · · ◦ σ ◦ A1, where the
An : Rln−1 → Rln are affine functions and σ is applied element-wise. Let Nσ(A) be the set of all σ-networks
with architecture A. The activation functions we consider are of the following type.

Assumption 1. Let σ : R → R be non-constant and locally Lipschitz continuous, and suppose that (i) σ is
bounded and monotone; or (ii) σ satisfies limx→−∞ x−1σ(x) = 0 < limx→∞ x−1σ(x) <∞.

This covers most common continuous activation functions such as the sigmoid, the hyperbolic tangent,
the softplus, the (scaled) Exponential Linear Unit (ELU), the Gaussian Error Linear Unit (GELU), and the
Sigmoid Linear Unit (SiLU/swish).

Proposition 2. Let A = (1, 1, 1) if σ is unbounded and A = (1, 2, 2, 1) if σ is bounded. Then, ReLU belongs
to the closure of Nσ(A) with respect to the uniform topology.1 In other words, for any compact set K ⊆ R
and any ε > 0 there exists a ϕ ∈ Nσ(A) such that supx∈K |ϕ(x)− ReLU(x)| < ε.

Given a ReLU-network, replace each hidden ReLU-neuron by a σ-neuron if σ is unbounded. The
architecture stays the same, only the activation changes. If σ is bounded, replace each hidden neuron in the
ReLU-network by four σ-neurons in a (2, 2) constellation. The number of hidden layers doubles, and the
number of hidden neurons increases 4-fold. Proposition 2 implies that the resulting σ-network is at least as
expressive as the original ReLU-network. More formally, we obtain the following result.
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1For unbounded σ, this has been shown implicitly in [Mhaskar and Micchelli, 1992] and [Mhaskar, 1993].
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Theorem 3. Let f ∈ C(Rd,Rn), let K ⊆ Rd be compact, and let ε > 0. Suppose there exists a ReLU-network
ϕ such that supx∈K ∥f(x)− ϕ(x)∥ < ε. Then, there exists a σ-network ψ such that supx∈K ∥f(x)− ψ(x)∥ < ε.
If σ is unbounded, then the architecture of ψ is the same as that of ϕ. If σ is bounded, then the architecture
of ψ is obtained by replacing all hidden neurons in the architecture of ϕ by a network of architecture (2, 2).

While the σ-network in Theorem 3 is four times the size of the ReLU-network in the second case, results
on approximation capacities of neural networks typically investigate the size of the architecture as a function
of the accuracy (and possibly other parameters) but ignore constant factors, which get absorbed in the
O-notation that is commonly used. Thus, from the point of view of approximation capacities, the σ-network
and the ReLU-network in Theorem 3 are qualitatively of the same size.

Remark 4. It is straight-forward to extend Theorem 3 from ReLU to any piece-wise linear activation
function, in particular leaky ReLU, albeit the factor by which the architecture increases will differ. If σ
admits a point of twice differentiability with non-vanishing second derivative, then one can go one step
further and replace ReLU with any polynomial spline, in particular with the Rectified Power Unit (RePU).

Proof. Let us prove Proposition 2, of which Theorem 3 is an immediate consequence. Suppose first σ is
unbounded. Let m = lim→∞ x−1σ(x). For any c > 0, consider the function ϕc(x) = (cm)−1σ(cx). Let
R > 0 and ε ∈ (0, 1). We show that we can pick c sufficiently large so that |ϕc(x)− ReLU(x)| < ε for all
x ∈ [−R,R]. Take T > |σ(0)| such that

∣∣x−1σ(x)
∣∣ < R−1mε for all x < −T and

∣∣x−1σ(x)−m
∣∣ < R−1mε

for all x > T . Let δ < R and c = δ−1T . Then, for all x with |x| ∈ (δ,R] we have |cx| > T and, hence,
|ϕc(x)− ReLU(x)| < ε by choice of T . Next, take L > 0 such that σ is L-Lipschitz continuous on [−T, T ].
Then, ϕc is (m−1L)-Lipschitz continuous on [−δ, δ]. Note that |ϕc(0)| < m−1δ since c > δ−1 |σ(0)|. Thus,
for all x ∈ [−δ, δ],

|ϕc(x)− ReLU(x)| ≤ |ϕc(x)− ϕc(0)|+ |ϕc(0)|+ReLU(x) ≤ L |x|
m

+
δ

m
+ |x| ≤ Lδ

m
+

δ

m
+ δ.

Since L depends only on T , we could have picked δ such that this expression is smaller than ε. This concludes
the case of unbounded σ.

Now, suppose σ is bounded and monotone. Since σ is non-constant and locally Lipschitz continuous,
there exists a point p at which σ is differentiable with non-vanishing derivative. Note that Nσ(A) = Nρ(A)
for any function ρ of the form ρ(x) = aσ(cx + d) + b with a, c ̸= 0. Thus, we may assume without loss
of generality that p = 0 and that σ(0) = 0 and σ′(0) = 1. Denote σ±∞ = limx→±∞ σ(x), which satisfy
σ−∞ < 0 < σ∞. This time, consider ψ(x) = M(σ(cx) − σ∞) and ϕ(x) = η−1[σ(σ(ηx) + ψ(x)) − σ(ψ(x))]
with η, c,M > 0 to be specified. Let R > 1 and ε ∈ (0, 1). Take L1 > 1 such that σ is L1-Lipschitz
continuous on [−1, 1]. By Taylor’s theorem, we can pick η < (L1R)

−1 so small that |σ(x)− x| < εη/4 for
all x ∈ [−ηL1R, ηL1R]. Next, take M > 1 so large that σ(−Mσ∞) − σ−∞ < εη/2. By monotonicity of σ,
this choice of M implies |ϕ(x)| < ε for all x ≤ 0. If we take L > L1 so that σ is L-Lipschitz continuous on
[σ−∞ −M(σ∞ − σ−∞), σ∞], then |ϕ(x)| ≤ η−1L |σ(ηx)| for all x ∈ R. Let δ = L−2ε. Since δ < 1 < L1R,
we find |σ(ηx)| ≤ L1ηδ for all x ∈ [−δ, δ] and, hence, |ϕ(x)| ≤ L1Lδ < ε for these x. Finally, pick c so large
that σ∞ − σ(cδ) < (4LM)−1εη. Then, |ψ(x)| < (4L)−1εη < 1 for all x > δ. This implies |σ(ψ(x))| < εη/4
and |σ(σ(ηx) + ψ(x))− σ(σ(ηx))| ≤ εη/4 for all x > δ. By choice of η, we have |σ(ηx)− ηx| ≤ εη/4 and
|σ(σ(ηx))− σ(ηx)| ≤ εη/4 for all x ∈ [−R,R]. Thus, for all x ∈ (δ,R],

η |ϕ(x)− x| ≤ |σ(ψ(x))|+ |σ(σ(ηx) + ψ(x))− σ(σ(ηx))|+ |σ(σ(ηx))− σ(ηx)|+ |σ(ηx)− ηx| < εη.

The proof is finished.
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