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Abstract: We discuss suspension and contact flows to deduce the corresponding dichotomy for
Anosov stable Hamiltonian structures in dimension three. Afterwards, we review the surgery proposed
by Foulon and Hasselblatt to verify that Dehn surgery on flows can be refined to preserve stability of
Anosov stable Hamiltonian structures. As a consequence, we obtain non-algebraic contact Anosov flows
in dimension three. Furthermore, we expand on Foulon and Hasselblatt’s surgery and show how to
construct non-algebraic virtually contact Anosov Hamiltonian structures that are not of contact type. To
obtain flows suitable for the latter type of surgery, we independently develop the rich theory of magnetic
flows, including a thorough discussion of Mañé’s critical values and associated results.



Introduction

An old important problem with many applications in both applied and pure mathematics is the study
of (time-dependent) differential equations. Their solutions give rise to flows, which is the starting point
for (continuous-time) dynamical systems. The approaches and results found in the theory of differential
equations depend heavily on the type of the equation, which may range from elliptic to parabolic to hy-
perbolic. The latter is the kind we are interested in here. More specifically, we will mostly study Anosov
flows, which are flows that admit hyperbolic behavior on the entire underlying manifold. One of the many
nice concepts in the theory of Anosov flows is the interplay of dynamical systems and geometry. Namely,
many properties of these flows are linked to the structure of the underlying manifold and vice versa. A
key example of this are geodesic flows on Riemannian manifolds. For instance, these are Anosov if the
manifold has strictly negative curvature. Geodesic flows model the evolution of a particle under the prin-
ciple of least action. Starting from this, one may also introduce a distortion modeling a magnetic field.
Then the resulting magnetic flow models the evolution of an electrically charged particle. While geodesic
flows have been studied for centuries and are well-understood by now, the study of magnetic flows is only
a few decades old and is still subject of active research. Obviously, a magnetic flow depends on both the
Riemannian metric and the magnetic field. Various constellations of these two quantities relative to each
other may equip the magnetic flow with properties like being Anosov or being contact. Let us explore
a taste of this. Depending on the energy level of the charged particle, the magnetic field has a weaker
or stronger influence. As the energy level increases, the magnetic flow approaches the geodesic flow. For
negative curvature, the latter is Anosov and, since Anosov flows are structurally stable, the magnetic flow
must be Anosov for large energy levels. Generally, one looses the Anosov property when considering a
small charge, so there must be a specific energy level at which we pass from having an Anosov magnetic
flow to having a non-Anosov one. This gives rise to the notion of critical values encompassing exactly this
information. Surprisingly, these critical values also carry information about whether a magnetic flow has
the contact or virtually contact property. Thus, we find another correlation between purely dynamical
information and geometric data.
In a broader picture, the geometric consequences are even more noticeable, particularly in dimension
three. A prominent indicator is Ghys’ theorem, which states that any Anosov flow on a 3-manifold that
is a circle bundle is orbit equivalent to a geodesic flow. On the other end of the spectrum, Plante proved
that if the underlying manifold has a solvable fundamental group, then the flow is a suspension (which,
morally, is a diffeomorphism artificially turned into a flow). Both of these examples fit into the wider
class of Anosov Hamiltonian structures. These live at the intersection of dynamical systems and the sym-
plectic/contact subbranch of geometry. An important notion that enters from the symplectic geometric
side is stability. Stability of a hypersurface in a symplectic manifold refers to the existence of a tubular
neighborhood that behaves nicely with respect to the ambient symplectic structure. This, in turn, is
linked to the existence of a flow that realizes the tubular neighborhood by pushing the hypersurface in
forward and backward time. It is such a flow we are interested in, i.e. a Reeb flow of an Anosov stable
Hamiltonian structure. Whereas this class is much richer in higher dimensions, it is rather tight in di-
mension three. There is a dichotomy of the form contact versus suspension structures, and the geometry
of the underlying manifold alone (almost) decides in which class the flow lives.
The subclass provided by contact Anosov flows particularly gives rise to interesting questions. For in-
stance, in light of Ghys’ theorem mentioned above, are there contact Anosov flows that are not equivalent
to geodesic flows? The answer is “yes” but these flows are usually quite exotic and do not really arise
naturally. Most counter-examples are constructed by performing Dehn surgery that preserves the Anosov
property. Most of the times though, such a Dehn surgery breaks the contact property and one needs
some additional care to obtain new Anosov flows that are still contact.
The preceding discussion emphasized contact flows, but there is a weaker notion one might be interested
in. Namely, we will also study virtually contact Anosov Hamiltonian structures. Basically, this means
that some lift of the structure is contact but with some additional boundedness assumptions. We can ask



ourselves whether the Dehn surgery can be adapted so that it preserves the virtual contact property. In
general, it seems like there are no decent starting points to tackle this problem. It is now that magnetic
flows enter back into the game. These will provide flows that are suitable for such an adapted surgery.
The upshot is that they are quite similar to geodesic flows which enables us to perform some explicit
calculations. On the other hand, introducing a magnetic field is sufficient to break the contact property of
geodesic flows in some specific settings. These two properties conveniently enable us to adapt the surgery
to preserve the virtual contact property. We are not aware of any reference where such structures have
been shown to exist and we believe that the construction of these virtually contact Anosov Hamiltonian
structures is the highlight of this thesis.

Outline

Let us fix some standing assumptions, which we do not mention each time they are used. All manifolds
are assumed to be smooth, connected, oriented, and closed. Furthermore, if we are dealing with a contact
structure, then we always assume it is co-orientable, i.e. that the contact structure can be realized as
the kernel of a globally defined smooth 1-form. Throughout, φt : M →M denotes a smooth flow, whose
infinitesimal generator we call F . We assume that any flow does not have fixed points.
The reader should be familiar with some basic notions from algebraic topology, symplectic, and contact
geometry. Knowing some basic and intermediate results about hyperbolic flows can be useful, but we
recall all the results we need in the first four sections of chapter one (though, we do not provide proofs
for all of them). After that, we proceed with an elaborate discussion of suspension and contact flows
(chapters 1.5 and 1.6). These are the set-up for the classification of Anosov stable Hamiltonian structures
in dimension three (chapter 1.7).
In chapter two, we introduce magnetic flows on surfaces and begin by reviewing the special case in
which the Riemannian metric has constant curvature and the magnetic field is a constant multiple of
the associated area form (chapters 2.1, 2.2, and 2.3). Revisiting our interest in contact flows, we deduce
that, in most cases, this is too strong of a property to satisfy for magnetic flows (chapter 2.4). This
section is also the first step towards building suitable flows for the refined surgery later. Afterwards, we
start tackling magnetic flows from a different point of view by introducing Lagrangians and the Legendre
transform (chapter 2.5). This enables us to develop the theory surrounding Mañé’s critical values, which
we do in the proceeding section (chapter 2.6). We finish chapter two by exploring the interplay of magnetic
dynamics and geometry, which is governed by the relation of the energy level relative to the previously
defined critical values (chapter 2.7).
The final chapter is concerned with Dehn surgery giving rise to new exotic flows. We first show how
Dehn surgery can preserve the Anosov property of a flow (chapter 3.1). Secondly, we exhibit exotic flows
by producing Anosov flows that do not fit into the category of algebraic ones (chapter 3.2). Finally,
we also want the surgery to preserve some geometric structure. More precisely, we look at Hamiltonian
structures under surgery as well as what happens to stability (chapter 3.3). We do this based on work by
Foulon and Hasselblatt. The thesis concludes with a construction of a certain class of new Hamiltonian
structures of which there is no record in the literature that the author is aware of (chapter 3.4). More
precisely, we prove the existence of Hamiltonian structures that are non-algebraic, Anosov, and of virtual
contact type, but that do not arise from contact structures.
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1 Anosov Flows

1.1 Hyperbolicity

We begin by recalling a few notions concerning relations between flows. Two flows φt : M → M and
ψt : N → N are Ck-conjugate if there exists a Ck-diffeomorphism h : M → N with h ◦ φt(x) = ψt ◦ h(x).
Conjugacies determine the topological (or Ck-regular) class of a flow since any topological (or smooth)
property is preserved by C0- (or Ck-)conjugacies. The next relation is weaker in the sense that it does
not necessarily preserve topological properties. If N = M and if the orbits of φt and ψt are the same (as
subspaces of M), then ψt is said to be a time-change of φt. In this case, there is a family of continuous
functions αt : N → N with ψt(x) = φαt(x)(x). Since ψt is a flow, this family must satisfy α0 = 0 and

αs+t(x) = αs(ψt(x)) + αt(x). (1)

We call such a family α a cocycle. The time-change is said to be Ck if the cocycle is. Note that the
infinitesimal generator of a time-change of φt is a multiple of F , namely multiplied by ∂

∂t

∣∣
t=0

αt(x). We

can also consider a hybrid type of relation between two flows: φt and ψt are Ck-orbit equivalent if there
exists a Ck-diffeomorphism h : M → N carrying orbits of φt to orbits of ψt. In other words, the conjugate
flow h ◦ φt ◦ h−1 is a time-change of ψt. We may assume that the time-change is smooth if we are willing
to replace the conjugacy ([FH18, Prop. 1.3.20]. When we simply write that two flows are conjugate,
time-changes, or orbit equivalent, then we refer to the weakest case k = 0. Since an orbit-equivalence
contains a time-change, it also does not necessarily preserve all topological properties of a flow. However,
note that all three types of relations preserve transitivity, where we recall that a flow is transitive if it
admits a dense orbit.
For us, one of the most important properties a flow can have is hyperbolicity. Even more so, we are mainly
interested in Anosov flows. Recall that a flow is Anosov if M is a hyperbolic set for the flow, meaning
that there exists a φt-invariant splitting TM = RF ⊕Es⊕Eu in the sense that (dφt)x(Esx) = Esφt(x) (and

similarly for Eu) that, moreover, satisfies the following: for some (any) Riemannian metric there exist
constants C ≥ 1 and µ ∈ (0, 1) such that for any x ∈M and any t ≥ 0 we have

||(dφt)x(v)|| ≤ Cµt||v||, for all v ∈ Esx,
||(dφ−t)x(v)|| ≤ Cµt||v||, for all v ∈ Eux .

That this property is independent of the Riemannian metric is due to compactness (a different choice of
metric merely changes the constant C). A compact φt-invariant subset of M is hyperbolic if the restriction
of the flow to this set is Anosov. We call RF , Es, and Eu the center, stable, and unstable subbundles
and sometimes also write Ec for RF . Note that, by invariance of the splitting, we also always have the
reverse inequalities

||(dφ−t)x(v)|| ≥ 1

C
µ−t||v||, for all v ∈ Esx,

||(dφt)x(v)|| ≥ 1

C
µ−t||v||, for all v ∈ Eux .

By compactness of the Grassmanians, the splitting is always continuous and, hence, the dimension of each
subbundle is constant. The splitting is even Hölder-continuous ([Bal95, page 81] or [FH18, Thrm. 8.3.1])
but, in general, does not inherit more regularity than that ([FH18, Prop. 8.4.7]). Clearly, the Anosov
property of a flow is preserved under C1-conjugacies. With some work, we can verify that the Anosov
property is also preserved under C1-time-changes:

Proposition 1.1 (Invariance under Time-Changes). Suppose φt is Anosov and ψt is a C1-time-change
of φt. Then ψt is Anosov, as well.

1



1.1 Hyperbolicity

Proof. Let αt(x) denote the cocycle corresponding to the time-change. Abbreviate f(x) = ∂
∂t

∣∣
t=0

αt(x)

and write F̃ = fF for the infinitesimal generator of ψt. Then the differential of the latter is

(dψt)x(v) = (dαt)x(v)F (ψt(x)) + (dφαt(x))x(v). (2)

We want to construct the invariant splitting by hand. To this end, consider the subspaces Ẽsx given by
{v+s(x, v)F̃ (x) | v ∈ Esx}, where s : TM → R needs to be specified. The differential of ψt acts on vectors
in Ẽsx by

dψt

(
v + s(x, v)F̃ (x)

)
= (dαt)x(v)F (ψt(x)) + (dφαt(x))x(v) + s(x, v)F̃ (ψt(x))

= (dφαt(x))x(v) + ((dαt)x(v) + s(x, v)f(ψt(x)))F (ψt(x)).

In order for the subbundle Ẽs to be ψt-invariant, we need that this vector equals a vector of the form
w + s(ψt(x), w)F̃ (ψt(x)) with w ∈ Esψt(x). Thus, we need the function s to satisfy

(dαt)x(v) + s(x, v)f(ψt(x)) = s
(
ψt(x), (dφαt(x))x(v)

)
f(ψt(x))

for all x ∈M and all v ∈ Esx. If we can find such a function s that is also linear in the second argument,
then ψt fulfills the exponential decay on Ẽs for

dψt

(
v + s(x, v)F̃ (x)

)
= (dφαt(x))x(v) + s

(
ψt(x), (dφαt(x))x(v)

)
f(ψt(x))F (ψt(x)) (3)

inherits the exponential decay from dφαt(x) on Es. The time-change does not disrupt the decay property
since αt(x) can be uniformly bounded from below by kt for some constant k > 0, by the pseudo-linearity
of α with respect to time and by compactness of M . More precisely, the restriction of α to M× [1, 2] takes
values in a bounded domain [ε, R] for some 0 < ε < R, by compactness. Take k smaller than ε/2. Then
αt(x) > kt holds on M × [1, 2]. For any larger t > 2, we get the same bound by the cocycle property. Fix
any Riemannian metric on M . Using compactness once more and linearity of s in the second argument,
we can pick a bound K of the operator norms of s(x, ·), x ∈ M . Lastly, let K ′ denote a bound on ||F̃ ||.
Then equation (3) implies

||dψt
(
v + s(x, v)F̃ (x)

)
|| ≤ (1 +KK ′)||(dφαt(x))x(v)||

≤ (1 +KK ′)Cµαt(x)||v|| ≤ (1 +KK ′)Cµkt||v||

for all t ≥ 1, where C and µ are the constants from the hyperbolicity definition for φ. By taking a larger
constant, we can accommodate for values t < 1 and conclude that ψ satisfies the desired decay property
on Ẽs. Hence, we only need to worry about invariance. Note that differentiating the cocycle equation
(1) of α yields

(dαr+t)x = (dαt)x + (dαr)ψt(x) ◦ (dψt)x.

In particular, using equation (2), we obtain

(dαr)ψt(x) ◦
(
dφαt(x)

)
x

(v) = (dαr+t)x(v)− (dαt)x(v)− (dαt)x(v) · (dαr)ψt(x)(F (ψt(x))). (4)

Moreover, since

F̃ (ψr(x)) = (dψr)x(F̃ (x)) = (dαr)x(F̃ (x))F (ψr(x)) + (dφαr(x))x(F̃ (x))

is equivalent to

f(ψr(x)) = f(x) (1 + (dαr)x(F (x)) ,

2



1.1 Hyperbolicity

we can conclude that

(dαr)ψt(x)(F (ψt(x))) =
f(ψr+t(x))

f(ψt(x))
− 1.

Combining this equation with equation (4), we obtain

(dαr)ψt(x) ◦
(
dφαt(x)

)
x

(v) = (dαr+t)x(v) +
f(ψr+t(x))

f(ψt(x))
. (5)

Having established this useful formula, we can turn to the quest of finding a suitable function s. Define
an auxiliary function by

S(x, v) =
∂

∂r
|r=0

1

f(ψr(x))
(dαr)x(v).

Then this function behaves nicely when we plug in the input that s needs to take:

S
(
ψt(x), (dφαt(x))x(v)

)
=

∂

∂r

∣∣∣∣
r=0

1

f(ψr+t(x))
(dαr)ψt(x)

(
(dφαt(x))x(v)

)
(5)
=

∂

∂r

∣∣∣∣
r=0

1

f(ψr+t(x))

(
(dαr+t)x(v) +

f(ψr+t(x))

f(ψt(x))

)
=

∂

∂r

∣∣∣∣
r=0

1

f(ψr+t(x))
(dαr+t)x(v)

=
∂

∂r

∣∣∣∣
r=t

1

f(ψr(x))
(dαr)x(v).

Next, consider the function

s(x, v) = −
∫ ∞

0

S
(
ψs(x), (dφαs(x))x(v)

)
ds.

The integral defining s(x, v) exists because of the exponential decay of the second input of S(x, v) coupled
with linearity of S in the second argument. Further, s is exactly the function we were looking for as the
following calculation shows:

s
(
ψt(x), (dφαt(x))x(v)

)
= −

∫ ∞
0

S
(
ψs+t(x), (dφαs+t(x))x(v)

)
ds

= −
∫ ∞
t

S
(
ψs(x), (dφαs(x))x(v)

)
ds

= s(x, v) +

∫ t

0

(
∂

∂r

∣∣∣∣
r=s

1

f(ψr(x))
(dαr)x(v)

)
ds

= s(x, v) +
1

f(ψt(x))
(dαt)x(v).

This finishes the construction of an invariant stable subbundle for ψt. An invariant unstable subbundle
is obtained by analogue considerations.

However, more than often it is not feasible to construct the splitting by hand as in the previous
proof. To this end, it is convenient to introduce a more abstract and more flexible criterion to establish
hyperbolicity. Such is provided by the Cone Criterion.

3



1.2 The Cone Criterion

1.2 The Cone Criterion

Let ε ∈ (0, 1). Given a split normed vector space V = V1 ⊕ V2, whose elements we write as v = v1 + v2,
we define the ε-cone by Cε(V1, V2) =

{
v ∈ V

∣∣ ||v2|| < ε||v1||
}

.

Proposition 1.2 (Cone Criterion). A compact φt-invariant set Λ ⊂M is hyperbolic if and only if there
exists a splitting TM |Λ = Ec⊕S⊕U and constants C ≥ 1, ε, µ ∈ (0, 1) such that for all x ∈ Λ and t > 0
we have the following (where we abbreviate SC = Ec ⊕ S and UC = Ec ⊕ U):

(dφt)x

(
Cε(Ux, SCx)

)
⊂ Cε(Uφt(x), SCφt(x)),

(dφ−t)x

(
Cε(Sx, UCx)

)
⊂ Cε(Sφ−t(x), UCφ−t(x)),

and in each cone

||(dφt)x(v)|| ≥ 1

C
µ−t||v||, for v ∈ Cε(Ux, SCx),

||(dφ−t)x(v)|| ≥ 1

C
µ−t||v||, for v ∈ Cε(Sx, UCx).

Proof. The “only if” direction is obvious since we are given an invariant splitting with the desired growth
properties and compactness enables us to find small invariant cone neighborhoods in which the inequalities
remain valid. Now suppose that we are given the setup described in the statement. We do not need to
worry much about the growth conditions since these are already satisfied in the cones, but we need a
splitting that is invariant. To this end, let us check that the following subsets qualify:

Eux =
⋂
t>0

(dφt)φ−t(x)

(
Cε(Uφ−t(x), SCφ−t(x))

)
,

Esx =
⋂
t>0

(dφ−t)φt(x)

(
Cε(Sφt(x), UCφt(x))

)
.

Now abbreviate S(r) = (dφ−r)φr(x)(Sφr(x)). This is a linear space inside the cone Cε(Sx, UCx) so that
for t < r we have

(dφt)x(S(r)) ⊂ Cε(Sφt(x), UCφt(x)).

In particular,

S(r) ⊂
⋂
t<r

(dφ−t)φt(x)

(
Cε(Sφt(x), UCφt(x))

)
.

By compactness of the Grassmanians, we can consider an accumulation point S(∞) of S(r). The last
inclusion implies that this linear space S(∞) will be contained inside Esx. Moreover, S(∞) has the
same dimension as Sx. Applying the same argument to Eux and counting dimensions, we find a splitting
TxM = Ecx ⊕ S(∞)⊕ U(∞). If we can show that Esx is also contained in S(∞) (and Eux ⊂ U(∞)), then
this is exactly the desired hyperbolic splitting. Thus, suppose we are given a vector v ∈ Esx. Write this
vector as vs + vu with vs ∈ S(∞) and vu ∈ Ecx ⊕ U(∞). Clearly, the center space Ecx does not belong to
Esx so that, in fact, vu ∈ U(∞) ⊂ Eux . Then we can use the exponential growth to calculate

||vu|| = ||(dφ−t)φt(x) ◦ (dφt)x(vu)|| ≤ Cµt||(dφt)x(vu)||
≤ Cµt

(
||(dφt)x(v)||+ ||(dφt)x(vs)||

)
≤ C2µ2t

(
||v||+ ||vs||

)
−→ 0.

4



1.2 The Cone Criterion

Remark 1.3. Examining the proof reveals that we never needed the cone structure. Indeed, all we
need is a collection of subsets Csx, C

u
x ⊂ TM on which the growth conditions are valid, whose forward

(respectively backward) iterates define a strictly decreasing sequence of subsets, and which contain the
splitting components Sx and Ux, respectively.

As an application of the cone criterion, we may deduce the persistence of hyperbolicity. Namely, if
Λ is a hyperbolic set for φt, then there exists a small neighborhood U of Λ such that for any sufficiently
small C1-perturbation ψt of φt the intersection

⋂
t∈R ψt(U) is a hyperbolic set for ψt. Beware that the

ψt-invariant set
⋂
t∈R ψt(U) might be empty. One particular instance, in which we can assure that it is

not empty, is the case Λ = M . This recovers the structural stability of Anosov flows.
For later use, we would also like to present a variant of the Cone Criterion. To state it, we introduce the
following notion: A Lorentz metric on M is a collection gx, x ∈ M , of non-degenerate bilinear forms on
TxM of signature (m− 1, 1) that depend continuously on the base-point, where m denotes the dimension
of M . We call the associated quadratic form Q(v) = gx(v, v), v ∈ TxM , a quadratic Lorentz form. Given
such a quadratic Lorentz form, we can define its positive cone at x ∈M as Cx = {v ∈ TxM | Qx(v) > 0}.

Proposition 1.4 (Cone Criterion, variant). If M has dimension three, φt is Anosov if and only if there
are two quadratic Lorentz forms Qs and Qu with positive cones Cs and Cu, respectively, and constants
C ≥ 1, µ ∈ (0, 1), c, T > 0 such that for all x ∈M

(1.1) for all t > T and all v ∈ Csx \ {0} : Qsφ−t(x)((dφ−t)x)(v)) ≥ 1

C
µ−tQsx(v),

(1.2) for all t > T and all v ∈ Cux \ {0} : Quφt(x)((dφt)x)(v)) ≥ 1

C
µ−tQux(v),

(2) the intersection Csx ∩ Cux is empty,

(3) Qsx(F ) ≡ −c ≡ Qux(F ),

(4.1) (dφ−T )x
(
Csx \ {0}

)
⊂ Csφ−T (x),

(4.2) (dφT )x
(
Cux \ {0}

)
⊂ CuφT (x).

Proof. If we are given an Anosov flow, then such cones exist and, furthermore, the cones retroactively
describe suitable Lorentz metrics. Let us prove the reverse implication. We will consider the projec-
tivization PTM of the tangent bundle, i.e. collapse 1-dimensional linear subspaces to points. Because
the Lorentz metrics forming Qs and Qu have positive signature 2 and the cones do not intersect, Cs and
Cu become (filled-in) ellipses E± in the projectivization. For a more convenient notation, let us write

Esx(t) = P
(

(dφ−t)φt(x)

(
Csφt(x)

))
⊂ PTxM.

We claim that these ellipses Esx(t) collapse to a point as t → ∞, which we prove further below. More
precisely, we claim that the intersection Esx(∞) =

⋂
t>T Esx(t) consists of a single point. Of course, we

can do an analogue argument to get a singleton Eux (∞). By property (2) in the assumptions, the ellipses
Esx(t) and Eux (t) are disjoint for all x ∈ M and all times t so that Esx(∞) and Eux (∞) are also disjoint for
all x ∈ M . Moreover, by the third assumption, the vector field F does not lie in the cones and, hence,
does not define the same point in PTM as Esx(∞) or Eux (∞). Now let us leave the projectivization and go
back to the tangent bundle. The points Esx(∞) and Eux (∞) in PTM define two 1-dimensional subspaces
Es and Eu in TM whose intersection with each other and with RF is zero. These subbundles Es and
Eu are invariant because they are exactly

Esx =
⋂
t>T

(dφ−t)φt(x)

(
Csφt(x)

)
,
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1.3 Geodesic Flows

and similarly for Eux . For each x ∈M , the set of vectors v ∈ Esx, Eux with Qsx(v) = 1 or Qux(v) = 1 consists
of precisely two elements, so we can pick a Riemannian metric on M whose unit sphere intersects Esx, E

u
x

in exactly these two points. Then the first hypothesis asserts the growth condition for t > T ,

1

C
µ−t||v||2 =

1

C
µ−t||v||2 ·Qsx

(
v

||v||

)
=

1

C
µ−tQsx(v) ≤ Qsx ((dφ−t)x(v)) = ||(dφ−t)x(v)||2,

where v ∈ Esx, and similarly for Eux . By changing C we can also accommodate for values t ≤ T . It remains
to prove the claim about the collapse of the ellipses. The fourth hypothesis asserts that Esx(T ) ⊂ Esx.
In other words, if we fix any metric on PTM , then the map P (dφ−T )φT (x) : EsφT (x) → E

s
x induces a

contraction of the diameter of the ellipses. By compactness of M , we can choose a uniform contraction
rate r for all x ∈M . Thus, for all k ≥ 0

diameter
(
Esx(kT )

)
≤ rkdiameter

(
EsφkT (x)

)
.

Since the Lorentz metric varies continuously with the base-point, compactness implies that the diameters
of Esx are uniformly bounded in x. Hence, the diameter of Esx(kT ) tends to zero as k tends to infinity.
This proves that

⋂
k≥0 Esx(kT ) consists of a single point. Even though the fourth property does not assert

that the ellipses are nested for all times, the first property does exactly that for the interior of the ellipses.
Therefore,

⋂
k≥0 Esx(kT ) =

⋂
t>T Esx(t), which finishes the proof of the claim.

Let us note that the fact that we required the first hypothesis only for t > T and the fourth hypothesis
only for t = T changed little in the proof but gives us much more flexibility when verifying the hypothesis.
Conversely, if we start with an Anosov flow, then we can certainly satisfy the first and fourth hypothesis
for all times t > 0.

Remark 1.5. We stated the criterion for manifolds of dimension three. However, the criterion remains
true in higher dimensions, only then the quadratic forms are not Lorentz forms but have signatures
(m− dim(Es),dim(Es)) and (m− dim(Eu),dim(Eu)), respectively.

1.3 Geodesic Flows

In this section, we will review one of the most prominent and most studied examples of flows, namely
geodesic flows. Fix a Riemannian metric g on M so that there is a well-defined notion of geodesics. We
include the unit-speed property in the definition of a geodesic. Denote by UM the unit tangent bundle
of M . The geodesic flow on (M, g) is the flow defined by

φt : UM → UM, φt(x, u) = (γu(t), γ̇u(t)),

where γu is the unique geodesic starting at x with velocity u. Its infinitesimal generator is

G(x, u) = (∂t|t=0γu(t),∇t|t=0γ̇u(t)) = (u, 0),

where we use the splitting of the tangent bundle discussed in the appendix and ∇ denotes the Levi-Civita
connection of the metric. Our goal is to use the Cone Criterion to establish that the geodesic flow is
Anosov. The appropriate conditions for this to be true are as follows:

Theorem 1.6. If the Riemannian manifold M has strictly negative sectional curvature, then the geodesic
flow is Anosov.

Recall that the sectional curvature of a 2-dimensional plane S ⊂ TxM is

K(S) =
〈R(u, v)u, v〉

〈u, u〉〈v, v〉 − 〈u, v〉2
,
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1.3 Geodesic Flows

where u, v ∈ TxM are any two vectors spanning S, and R is the Riemann curvature tensor. The latter is
defined as

R(u, v)w = (∇t∇sZ −∇s∇tZ)(0, 0),

where u, v, w ∈ TxM , γ : R2 →M , and Z is a vector field along γ with

γ(0, 0) = x, ∂sγ(0, 0) = u, ∂tγ(0, 0) = v, Z(0, 0) = w.

To prove the theorem, we make use of the theory of Jacobi fields. A Jacobi field along a geodesic γ is a
vector field Y along γ that is a solution to the Jacobi equation

∇t∇tY +R(γ̇, Y )γ̇ = 0. (6)

A result from differential geometry states that Jacobi fields arise as perturbations of geodesics. Indeed,
if γ(t) = expx(tv), for small t, and we look at a perturbation of γ,

Y (t) =
∂

∂s

∣∣∣
s=0

expα(s)(tV (s)),

where α(s) ∈ M and V (s) ∈ Tα(s)M satisfy α(0) = x and V (0) = v, then Y solves the Jacobi equation.
Indeed, abbreviate Γ(s, t) = expα(s)(tV (s)) so that ∇t∂tΓ = 0 because for fixed s the map t 7→ Γ(s, t) is
a geodesic. Then

∇t∇t∂sΓ = ∇t∇s∂tΓ−∇s∇t∂tΓ = R(∂sΓ, ∂tΓ)∂tΓ.

Evaluating this equation at s = 0 yields the Jacobi equation. In fact, any Jacobi field has this form of a
perturbation. To see this, suppose a Jacobi field Y∗ along a geodesic γ is given. Locally, γ(t) = expx(tv),
where x = γ(0) and v = γ̇(0), and we can let Y (t) be defined as above. If we pick α such that
α̇(0) = Y∗(0) and also pick V (s) such that ∇sV (0) = ∇tY (0), then we get Y (0) = α̇(0) = Y∗(0) as well
as ∇tY (0) = ∇sV (0) = ∇tY∗(0). Thus, Y and Y∗ satisfy the same differential equation with the same
initial conditions. By standard ODE theory, we can conclude that Y ≡ Y∗, at least for ||tv|| smaller than
the injectivity radius where Y is well-defined. Now let us turn back to the geodesic flow. For small t, we
can write

φt(x, u) = (expx(tu), ∂r|r=t expx(ru)) .

Suppose Y0 is a given vector in the tangent space T(x,u)UM of the unit tangent bundle. Take a path β

in UM with β̇(0) = Y0 and write it as β(s) = (α(s), V (s)). Then we can compute

(dφt)(x,u)(Y0) = ∂s

∣∣∣
s=0

φt ◦ β(s) =
(
∂s

∣∣∣
s=0

expα(s)(tV (s)),∇s
∣∣∣
s=0

∂r

∣∣∣
r=t

expα(s)(rV (s))
)

= (Y (t),∇tY (t)),

where Y (t) is, as above, the Jacobi field with initial conditions

(Y (0),∇tY (0)) = (α̇(0),∇sV (0)) = ∂sβ(0) = Y0.

Thus, we can express the differential of the geodesic flow as Jacobi fields.

Proof of theorem 1.6. We want to use the Cone Criterion. By compactness, it suffices to fulfill the growth
properties in the cones in any norm, not necessarily the one induced by the metric. Let us define a new
norm on each T(x,u)UM by

||(XH , XV )||δ =
√
〈XH , XH〉+ δ〈XV , XV 〉,
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for some fixed δ > 0 specified later. Consider the cones

C+ε
(x,u) =

{
(XH , XV ) ∈ T(x,u)UM

∣∣∣ 〈u,XH〉 = 0 = 〈u,XV 〉 and 〈XH , XV 〉 ≥ ε||(XH , XV )||2δ
}
,

C−ε(x,u) =
{

(XH , XV ) ∈ T(x,u)UM
∣∣∣ 〈u,XH〉 = 0 = 〈u,XV 〉 and 〈XH , XV 〉 ≤ −ε||(XH , XV )||2δ

}
.

These are not actual cones but we can show that they are “cones” in the sense of remark 1.3. We claim
that these sets satisfy the hypothesis of the cone criterion for suitable ε and δ. Firstly, note that none of
the cones intersects span〈G〉. Furthermore, each cone contains an (n− 1)-dimensional linear subspace of
T(x,u)UM : if u, v1, . . . , vn−1 is an orthonormal basis of TxM , then (vj , vj) ∈ C+ε

(x,u) and (−vj , vj) ∈ C−ε(x,u)

for every 1 ≤ j ≤ n− 1 if we can take ε(1 + δ) < 1. We need to assert that there are suitable choices for
δ and ε such that we get strict invariance of the cone field and the growth conditions are satisfied inside

the cones. Given (XH , XV ) ∈ C+ε
(x,u), the cone criterion requires (dφt)(x,u)(XH , XV ) ∈ C+ε

φt(x,u). By the

previous discussion, this reduces to showing (Y (0),∇tY (0)) ∈ C+ε
(x,u) implies (Y (t),∇tY (t)) ∈ C+ε

φt(x,u)

for a Jacobi field Y . To this end, it suffices to prove that

〈Y (t),∇tY (t)〉
||(Y (t),∇tY (t))||2δ

= ε =⇒ d

dt

〈Y (t),∇tY (t)〉
||(Y (t),∇tY (t))||2δ

> 0.

To get some decent bounds, it is useful to observe that the Jacobi fields in question are orthogonal to
the geodesic γu in the sense that both 〈γ̇, Y 〉 ≡ 0 and 〈γ̇,∇tY 〉 ≡ 0. Indeed, they are orthogonal to u at
time 0 by definition of the cones and that they remain orthogonal for all times follows from

d

dt
〈γ̇,∇tY 〉 = −〈γ̇, R (γ̇, Y ) γ̇〉 = 0 and

d

dt
〈γ̇, Y 〉 = 〈γ̇,∇tY 〉 = 0.

By compactness, the sectional curvature is bounded from above by some −k2 < 0. Together with
orthogonality, this yields

〈R(γ̇, Y )γ̇, Y 〉 ≤ −k2〈Y, Y 〉. (7)

By compactness of UM , we may also bound

〈R(γ̇, Y )γ̇, R(γ̇, Y )γ̇〉 ≤ 1

κ2
〈Y, Y 〉 (8)

where 1/κ > 0 bounds the operator norm of Y 7→ R(γ̇, Y )γ̇. To simplify notation, let us abbreviate
Ẏ = ∇tY and RY = R(γ̇, Y )γ̇. Note that if δ ≤ 1/k2, then

〈Ẏ , Ẏ 〉+ k2〈Y, Y 〉
||(Y, Ẏ )||2δ

= k2

 〈Y,Y 〉〈Ẏ ,Ẏ 〉 + 1
k2

〈Y,Y 〉
〈Ẏ ,Ẏ 〉 + δ

 = k2

1 +
1
k2 − δ
〈Y,Y 〉
〈Ẏ ,Ẏ 〉 + δ

 ≥ k2 (9)

Moreover, we have √
〈Ẏ , Ẏ 〉〈Y, Y 〉

||(Y, Ẏ )||2δ
≤ 1

2
√
δ

(10)
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since (〈Y, Y 〉 − δ〈Ẏ , Ẏ 〉)2 ≥ 0. We can now compute using 〈Y,Ẏ 〉
||(Y,Ẏ )||2δ

= ε and the above bounds

d

dt

〈Y, Ẏ 〉
||(Y, Ẏ )||2δ

=

(
||(Y, Ẏ )||2δ

(
〈Ẏ , Ẏ 〉+ 〈Y, Ÿ 〉

)
− 2〈Y, Ẏ 〉

(
〈Y, Ẏ 〉+ δ〈Ẏ , Ÿ 〉

))
||(Y, Ẏ )||4δ

(6)
=
〈Ẏ , Ẏ 〉 − 〈Y,RY 〉
||(Y, Ẏ )||2δ

− 2ε

(
ε− δ 〈Ẏ , RY 〉

||(Y, Ẏ )||2δ

)

(Cauchy-Schwarz)
(7)

≥ 〈Ẏ , Ẏ 〉+ k2〈Y, Y 〉
||(Y, Ẏ )||2δ

− 2ε

ε+ δ

√
〈Ẏ , Ẏ 〉〈RY,RY 〉

||(Y, Ẏ )||2δ


(8),(9)

≥ k2 − 2ε

ε+
δ

κ

√
〈Ẏ , Ẏ 〉〈Y, Y 〉

||(Y, Ẏ )||2δ


(10)

≥ k2 − 2ε

(
ε+

√
δ

2κ

)
δ≤1/k2

≥ k2 − 2ε

(
ε+

1

2κk

)

> 0 if ε <

√
k2

2
+

1

16κ2k2
− 1

4κk
.

This establishes strict invariance of the cone field. To verify exponential growth, we calculate further
with the same estimates as in the previous computation

d
dt ||(Y, Ẏ )||2δ
||(Y, Ẏ )||2δ

(6)
= 2

〈Y, Ẏ 〉
||(Y, Ẏ )||2δ

− 2δ
〈Ẏ , RY 〉
||(Y, Ẏ )||2δ

≥ 2ε−
√
δ

κ
> 0 if δ < 4ε2κ2.

This yields ||(Y, Ẏ )||2δ ≥ Cµt, where C = ||(Y (0), Ẏ (0))||2δ and µ = exp(2ε −
√
δ/κ). In particular, we

can conclude that |||dφt|| grows exponentially on C+ε
(x,u). Note that we picked ε independently of δ, so by

taking δ smaller than min
(

1
ε − 1, 1/k2, 4ε2κ2

)
all the inequalities hold simultaneously. The computations

for C−ε(x,u) are analogous. This finishes the proof.

Geodesic flows have many more beautiful properties, but we will not discuss them here. They will
appear again as examples of the more general class of contact flows. However, before we get to these, we
first study a few more fundamental results associated with hyperbolic flows.

1.4 Invariant Foliations

In this section, we recall two more standard facts about hyperbolic flows. The first one is the existence
of invariant foliations associated to the subbundles of the splitting. The second one is the Spectral
Decomposition. Fix a Riemannian metric on M and let d be the associated distance function. The next
theorem can be found as [FH18, Thrm. 6.1.1].

Theorem 1.7 (Local Stable and Unstable Manifold Theorem). Suppose Λ ⊂M is a hyperbolic set for a
flow φt. There exists a constant ε0 > 0 such that for all ε < ε0 and all x ∈ Λ the sets

W s
ε (x) =

{
y ∈M

∣∣∣ ∀t > 0: d(φt(x)φt(y)) < ε and d(φt(x), φt(y))→ 0 as t→∞
}
,

Wu
ε (x) =

{
y ∈M

∣∣∣ ∀t > 0: d(φ−t(x)φ−t(y)) < ε and d(φ−t(x), φ−t(y))→ 0 as t→∞
}

9
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are embedded smooth manifolds that depend continuously on the base-point in the C1-topology. Moreover,
their tangent bundles are given by TxW

s
ε (x) = Esx and TxW

u
ε (x) = Eux , and they are invariant in the

sense that for t > 0 we have

φt (W s
ε (x)) ⊂W s

ε (φt(x)) and φ−t (Wu
ε (x)) ⊂Wu

ε (φ−t(x)).

Furthermore, for some C ≥ 1 and µ ∈ (0, 1) we have for all t > 0

d(φt(x), φt(y)) < Cµtd(x, y), for all y ∈W s
ε (x),

d(φ−t(x), φ−t(y)) < Cµtd(x, y), for all y ∈Wu
ε (x).

We call these manifolds the local strong stable and local strong unstable manifolds. In contrast, we
define the (global) strong (un)stable manifolds as

W s(x) =
⋃
t>0

φ−t (W s
ε (φt(x))) =

{
y ∈M

∣∣∣ d(φt(x), φt(y))→ 0 as t→∞
}
,

Wu(x) =
⋃
t>0

φt (W s
ε (φ−t(x))) =

{
y ∈M

∣∣∣ d(φ−t(x), φ−t(y))→ 0 as t→∞
}
.

These are not embedded, but immersed manifolds. Note that W s(x)∩W s(y) 6= ∅ implies W s(x) = W s(y)
by the triangle inequality and likewise for the unstable manifold. In particular, TyW

s(x) = Esy and
TyW

u(x) = Euy for any points x ∈ Λ and y ∈ W s(x),Wu(x). Lastly, as the name giving suggests, there
are corresponding (global) weak (un)stable manifolds given by

W sc(x) =
⋃
t∈R

φt (W s(x)) and Wuc(x) =
⋃
t∈R

φt (Wu(x)) .

For these we also have that W sc(x)∩W sy(x) 6= ∅ implies W sc(x) = W sc(y) as well as TyW
sc(x) = Ecy⊕Esy

and likewise for the unstable case. Because these (un)stable manifolds cannot intersect each other, they
give rise to foliations. We call the resulting foliations the strong/weak (un)stable foliation. The above
theorem includes the statement that these foliations have smooth leaves. However, in direction transverse
to the leaves, the regularity is usually diminished. From Hölder-continuity of the splitting components,
we can deduce at most that the foliation is Hölder-continuous. However, something special happens
in dimension three: the dimension alone is sufficient to enforce transverse C1-regularity on the weak
(un)stable foliation ([KH95, Cor. 19.1.11] or [FH18, Cor. 8.3.15]). Much more can be said about the
regularity of the foliations, but we do not need an in-depth knowledge of that here. Let it be said that
we will later investigate contact Anosov flows, which enforce smoothness on the bundle Es ⊕ Eu and,
hence, C1-regularity on the strong (un)stable foliation.
We now turn to the Spectral Decomposition. Recall that a basic set for φt is an isolated hyperbolic set
such that the restriction of the flow is transitive. The non-wandering set of φt is the set of all points for
which an arbitrarily small neighborhood returns to itself in finite time. The following classical theorem
even holds under weaker hypothesis but we only use it in the Anosov case; for a proof, see [FH18,
Thrm. 5.2.22].

Theorem 1.8 (Spectral Decomposition). For an Anosov flow, the non-wandering set is the closure of
the periodic points and is a finite disjoint union of basic sets. Furthermore, each basic set is the closure
of an equivalence class of the following equivalence relation on the set of periodic points:

p ∼ q ⇐⇒ W sc(p) ∩Wuc(q) 6= ∅ and W sc(q) ∩Wuc(p) 6= ∅

Corollary 1.9. An Anosov flow is transitive if and only if its non-wandering set equals M .
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Next, we prove some results related to density of (un)stable manifolds and to identifying the Spectral
Decomposition. These will come in handy when we later study volume-preserving flows.

Lemma 1.10. Given any basic set Ω0 and a periodic point p ∈ Ω0 of an Anosov flow φt, the weak
(un)stable manifold W sc(p) (Wuc(p)) is dense in Ω0.

Proof. By considering φ−t, it suffices to prove the statement for Wuc(p). Furthermore, since the periodic
points are dense in the non-wandering set, it suffices to show that Wuc(p) accumulates on any periodic
point q ∈ Ω0. By the characterization of the basic sets in the Spectral Decomposition, there is some point
z ∈ W sc(q) ∩Wuc(p). Then some iterate φt1(z) lies in W s(q) ∩Wuc(p). Therefore, since q is periodic,
another iterate φt1+t2(z) is close to q and still in Wuc(p).

From this, we can deduce the following result about when the Spectral Decomposition is trivial.

Lemma 1.11. If the non-wandering set of an Anosov flow φt contains an open set, then it equals the
entire manifold. In particular, the Spectral Decomposition is trivially {M}.

Proof. Denote by Ω0 a basic set in the Spectral Decomposition that contains an open set U . It suffices
to show that Ω0 is open. Given p ∈ Ω0, we first show that W sc(p) and Wuc(p) are both contained in
Ω0 and are dense. Since periodic points are dense in the non-wandering set, there exists a periodic point
p0 ∈ U . Given q ∈ W sc(p0), the orbit of q asymptotically approaches the orbit of p0. In particular, the
orbit of q hits the open set U at some point. Thus, W sc(p0) ⊂

⋃
t≤0 φt(U) ⊂ Ω0 by invariance. Since Ω0

is closed and since W sc(p0) is dense in Ω0 by the previous lemma, we find W sc(p0) = Ω0. Hence, there
is a sequence (pn)n ⊂ W sc(p0) converging to p. Then also W sc(p) = Ω0 because W sc(pn) = W sc(p0)
and the weak stable manifolds depend continuously on the base-point. The entire argument also works
for Wuc(p). Note that at p the submanifolds W s(p) and Wu(p) are transverse to each other as well
as transverse to the flow direction. Thus, by their density, W sc(p) and Wuc(p) “foliate” a small open
neighborhood of p. This neighborhood is contained in Ω0, which finishes the proof.

Let us note that the proof of lemma 1.11 contained the following upgrade of lemma 1.10:

Lemma 1.12. If the non-wandering set is the entire manifold, then W sc(p) and Wuc(p) are dense in M
for any point p ∈M .

We obtained results about density of the weak (un)stable manifolds. When we ask for density of the
strong (un)stable manifolds, we encounter another topological property of flows. Recall that a flow is
topologically mixing if for any two open sets U and V there is some time T > 0 with φt(U) ∩ V 6= ∅ for
all t ≥ T . Clearly, topological mixing implies transitivity, but the reverse implication does not hold in
general.

Proposition 1.13. If φt is a transitive Anosov flow and if the strong stable and strong unstable manifold
of every periodic point is dense, then φt is topologically mixing.

Proof. Pick any metric on M and denote by Wu
R(q) the ball of radius R around q inside the strong

unstable manifold with respect to the induced metric on Wu(q). Let p be a periodic point and ε > 0.
We make the following claim: there exists some large R > 0 so that for any point q on the orbit of p
the set Wu

R(q) is ε-dense in M . Suppose for contradiction that for all n ∈ N there is a point qn on the
orbit of p and a point zn ∈M so that Wu

n (qn) and Bε(zn) are disjoint. By passing to a subsequence, we
may assume qn → q and zn → z as n → ∞. But then Wu(q) and Bε(z) are disjoint contradicting the
hypothesis. To finish the proof, let U and V be two open sets and pick a periodic point p ∈ U and some
ε > 0 so that Wu

ε (p) ⊂ U . Such a periodic point exists by transitivity. Let R > 0 be given by the claim.
Since we use the unstable manifold, φt(W

u
ε (p)) will contain Wu

R(φt(p)) for large times, i.e. for t ≥ T and
some large T > 0. Density of Wu

R(φt(p)) from the claim implies φt(U) ∩ V 6= ∅.

The converse of this proposition is also true, which we will encounter in the next section.
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1.5 Suspension Flows

We already introduced geodesic flows as a prominent example of Anosov flows. Another important class
of examples is given by suspension flows. These are constructed as follows. Suppose f : N → N is a
diffeomorphism of a manifold. Define the suspension (also called mapping torus) Mf of f as the quotient
of N ×R by the equivalence relation (x, s) ∼ (f(x), s− 1). Note that this is a fiber bundle over S1. Then
f induces a flow on its suspension via φt([x, s]) = [x, t+ s]. Assume now that f is Anosov, i.e. TM splits
into the stable and unstable subbundles Es and Eu. Then φt is an Anosov flow with the same stable
and unstable subbundles. This can be seen readily after noting that the infinitesimal generator is simply
the vector field ∂

∂t generated by the time coordinate and that (dφt)[x,s] = ((dfbs+tc)x, id). In dimension
three, there is a natural constraint on the manifolds admitting Anosov suspensions.

Proposition 1.14. If a suspension flow is Anosov, then the suspension came from an Anosov diffeomor-
phism. In dimension three, the suspended manifold must have been a torus.

Proof. Since a suspension flow clearly leaves the tangent bundles of the fibers invariant, the latter must
coincide with the bundle Es⊕Eu. Thus, the Anosov splitting of the flow also defines an Anosov splitting
for the time-1 map of the flow, which is exactly the suspended diffeomorphism. In dimension three, the
suspended manifold is a closed oriented surface. Since the existence of an Anosov splitting implies the
existence of a (continuous) nowhere vanishing vector field, this surface can only have been a torus.

In the previous section, we discussed results related to density of (un)stable manifolds. On the
contrary, suspensions are linked to non-density of these:

Proposition 1.15. If φt is a transitive Anosov flow and if there exists a periodic point whose strong
stable or strong unstable manifold is not dense, then φt is a (C1-)suspension.

For a proof of this result, we refer to [Pla72, Theorem 1.8]. As a consequence, we obtain a dichotomy
of the form suspension versus mixing for transitive Anosov flows. Indeed, note that suspension flows can
never be topologically mixing because, for instance, the sets φt(N × (0, 1

2 )) and N × ( 1
2 , 1) are disjoint

for all t ∈ Z. Thus, combining propositions 1.13 and 1.15 yields:

Corollary 1.16. A transitive Anosov flow is either topologically mixing or a suspension.

We would like to develop another criterion to detect suspensions. In order to do so, we review some
useful results about integrability of bundles and 1-forms. Usually, we consider smooth (C∞) forms, but
in this section we will allow continuous forms, as well. However, in the other chapters, forms are still
assumed to be smooth unless explicitly stated otherwise.
For a continuous form, there is an adapted definition of an exterior derivative, which agrees with the
standard notion in the smooth case. We are mainly interested in 1-forms. A 1-form λ admits an exterior
derivative if there exists a 2-form µ such that

∫
∂B

λ =
∫
B
µ for every C1-immersed disk B with a piece-

wise C1 boundary. If λ admits an exterior derivative, then it is unique and we denote it by dλ. We call a
1-form closed if its exterior derivative exists and is zero. A 1-form λ is said to be integrable if the bundle
ker(λ) is integrable, i.e. if there exists a foliation F with TF = ker(λ). The following is a standard result
in the theory of ODE’s, originally proved by Frobenius:

Theorem 1.17 (Frobenius’ Theorem). A 1-form λ is integrable if and only if its exterior derivative
exists and λ ∧ dλ = 0. In particular, any closed 1-form is integrable.

Sketch of proof. We give an outline of a proof for the smooth case. The idea is to use flows induced by two
linearly independent vector fields in ker(λ) to sweep out integral submanifolds. That these submanifolds
really are integral to ker(λ) is ensured when the two flows commute, which in turn is ensured when the
Lie bracket of the two vector fields vanishes. Observe that λ ∧ dλ = 0 if and only if [X,Y ] ∈ ker(λ)

12



1.5 Suspension Flows

for all X,Y ∈ ker(λ). Indeed, this follows readily from dλ(X,Y ) = λ([X,Y ]) for X,Y ∈ ker(λ). If λ
is integrable and N is an integral submanifold, then surely X,Y ∈ TN implies [X,Y ] ∈ TN ⊂ ker(λ).
Conversely, if the latter condition is satisfied, then one can construct two linearly independent vector
fields spanning ker(λ) whose Lie bracket vanishes. For more details, we refer to [Har02, p. 123f.].

Given a closed 1-form λ, consider the homomorphism H1(M,Z) → R that sends a homology class c
to
∫
σ
λ, where σ is a smooth representative of c. This is well-defined because for any boundary δη∫

σ+δη

λ =

∫
σ

λ+

∫
η

dλ︸︷︷︸
=0

=

∫
σ

λ.

It is clearly a homomorphism. The image set of this homomorphism is called the group of periods of λ.
We say λ has rational periods if the group of periods contains only rational numbers.

Lemma 1.18. Any closed Ck-1-form, 0 ≤ k ≤ ∞, can be C0-approximated by a closed Ck-1-form with
rational periods.

Proof. Take closed smooth 1-forms µ1, . . . , µl representing a basis of H1(M,Z) < H1(M,R). By the
Universal Coefficients Theorem, we can take smooth loops γ1, . . . , γl representing a basis of the free part
of H1(M,Z) with

∫
γi
µj = δij . Let λ be a closed Ck-1-form and fix a point p0 ∈M . Then

λ =

l∑
j=1

cjµj + df,

where cj =
∫
γj
λ and f : M → R is the Ck+1-function given by

f(p) =

∫ p

p0

(λ−
l∑

j=1

cjµj).

The integral defining f does not depend on the choice of smooth path from p0 to p because λ−
∑l
j=1 cjµj

gives zero when integrated over a smooth loop. Indeed, by definition of the coefficients cj , integrating
over a smooth loop lying in the homology class of a combination of concatenations of γ1, . . . , γl gives zero,
and integrating over a different loop gives zero because such a loop does not represent a homology class
in the free part of H1(M,Z). Approximate the real numbers c1, . . . , cl by rational numbers c′1, . . . , c

′
l and

define

λ′ =

l∑
j=1

c′jµj + df.

Then λ′ is a Ck-form that is C0-close to λ. Moreover, integrating over a combination of concatenations
of γ1, . . . , γl gives a rational number obtained from addition of c′1, . . . , c

′
l (possibly with repetition) while

integrating over a different loop gives zero, as before. Thus, λ′ has rational periods.

Next, we turn to the interplay of foliations and 1-forms. A foliation F is determined by a 1-form λ if
TF = ker(λ). If the form is closed, then this has a consequence on the holonomy of the foliation:

Lemma 1.19. Suppose F is a foliation determined by a closed 1-form. Then F has trivial holonomy.

Proof. Suppose for contradiction, this is not true. Then there is a loop γ contained in some leaf of F
such that the holonomy induced by γ is non-trivial. Take a small transversal to the foliation through
some point on γ. Then the holonomy of γ induces a non-trivial diffeomorphism of this transversal. In
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particular, we can find a point on the transversal close to γ which gets mapped to a different point on
the transversal under the holonomy and by choosing the point sufficiently close we can ensure that the
path of this point under the transport defining the holonomy is close to γ. Denote the path running
from the original point to its image point by δ1. Then δ1 is contained in a single leaf by definition of
the transport. Connect the endpoints of δ1 by a path δ2 transverse to the foliation. Denote the closed
1-form determining the foliation by λ. Note that integrating λ along δ2 yields a non-zero number by
transversality. Because δ1 is close to γ but contained in a different leaf, the concatenation δ1 ∗ δ2 can be
taken so that γ and δ1 ∗ δ2 bound an annulus. In particular, since λ is closed, Stoke’s theorem yields∫

γ

λ =

∫
δ1∗δ2

λ =

∫
δ1

λ+

∫
δ2

λ.

This is a contradiction because the integrals over γ and δ1 must both be zero since each of these paths
is contained in a single leaf which integrates ker(λ).

We included this lemma about holonomy in order to prove the next result, which provides us with a
useful tool to detect suspensions. How exactly this is related to suspensions will be discussed afterwards.

Proposition 1.20. Suppose λ is a closed 1-form with rational periods. Then M is a fiber bundle over
S1 whose fibers are the leaves of the foliation determined by λ. If λ is Ck, 0 ≤ k ≤ ∞, then the bundle
map is Ck+1. Moreover, λ is a positive multiple of the pullback of the canonical volume form on S1.

Proof. Since H1(M,Z) surely is finitely generated by compactness of M , a positive multiple λ′ of λ has
only integer periods. Now fix a point p0 ∈ M and define Π: M → S1 by Π(p) =

∫ p
p0
λ′ (mod 1). This

integral is independent of the smooth path from p0 to p because λ′ takes integer values when integrated
over smooth loops. Moreover, Π inherits the smoothness from λ′ with one additional degree of smoothness
and has differential dΠ(X) = λ′(X). In other words, λ′ is the pullback of the canonical volume form on
S1. Π maps two different points p and q from the same leaf to the same point in S1 because we can
compute Π(q) with a path from p0 to q via p, where we go from p to q inside the leaf. Then the second
part of the path has no contribution to the integral since the leaf integrates the kernel of λ′. Therefore,
Π−1(z) is always a union of leaves for any z ∈ S1. If there were infinitely many leaves in one level set of
Π, then there would be an accumulation of leaves on which Π is constant. However, when we take a path
transverse to the leaves, then the integral of λ′ along this path increases. Thus, no such accumulation can
exist. Hence, the level sets can contain only finitely many leaves, which must be compact because Π−1(z)
is a closed subset of the compact manifold M . We almost have a bundle structure but each base-point
admits several leaves above it. What we need to do is “unwind” the base. This can be done because
the holonomy of the foliation vanishes by the last lemma, which is known as the Reeb Stability Theorem
(more precisely, we use Thurston’s generalization of that theorem, see [Thu74, Thrm. 1+2]).

We need to specify how the previous proposition is linked to suspensions, which boils down to arguing
why the above bundle structure comes from a suspension. To do so, we introduce the notion of a section
of a flow. A section of a flow is a codimension one submanifold that is transverse to the flow direction
such that any orbit starting in this submanifold returns to it in finite time in both forward and backward
direction. Sections are the main tool to detect suspensions. Indeed, if a flow admits a section, then there
is a time-change so that the first return map of the section is given by the time-1 map of the scaled flow.
Then this time-change is the suspension flow of said first return map of the section.

Corollary 1.21. If a flow is transverse to the kernel of some non-trivial closed 1-form, then it is a
time-change of a suspension flow.

Proof. By lemma 1.18, we can replace the given 1-form by a closed 1-form λ with rational periods. Taking
λ C0-close to the original form, the flow remains transverse to the kernel of λ. Then proposition 1.20
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1.6 Contact Flows

provides us with a bundle structure over a circle whose fibers are the leaves of the foliation integrating
ker(λ). We claim that any fiber is a section. Transversality to the flow direction is clear since the fiber
is a leaf integrating ker(λ) and since the flow is transverse to ker(λ) by hypothesis. Now assume for
contradiction that some orbit starting in the fiber does not return. Then the projection of this orbit
to the base circle stays in some contractible subinterval. Therefore, it must admit a limit point. But
this contradicts that the fiber above this limit point is transverse to the flow direction. Thus, any fiber
is a section. A priori, these sections are only Ck+1, where Ck is the smoothness of the closed 1-form.
However, we can always perturb such a section to a smooth one.

In the previous results, we did not specify any particular 1-form to work with. However, in the Anosov
case, there is a distinguished 1-form associated with the flow. Any Anosov flow has an associated 1-form
defined by being 0 on Es ⊕ Eu and being 1 on the infinitesimal generator. Note that this form is in
general only (Hölder-)continuous.

Corollary 1.22. For an Anosov flow, its associated 1-form is closed if and only if the bundle Es ⊕ Eu
is integrable. In this case, the flow is a time-change of a suspension of an Anosov diffeomorphism.

Proof. By definition, the flow is transverse to the kernel of its associated 1-form. Denote the latter by λ.
By theorem 1.17, Es ⊕ Eu is integrable if and only if dλ exists and λ ∧ dλ is zero. Further, this implies
dλ = ιF (λ ∧ dλ) = 0 because 0 = LFλ = ιF dλ. In this case, we can apply corollary 1.21 to deduce that
a time-change of the flow is a suspension. Such a time-change remains Anosov and we conclude with
proposition 1.14.

1.6 Contact Flows

Another class of examples in a way “opposite” to suspensions is formed by contact flows. A flow φt is
contact if there exists a φt-invariant contact form λ with λ(F ) = 1. Note that a 1-form λ with ιFλ = 1
is φt-invariant if and only if ιF dλ = 0 by Cartan’s formula. If such a form λ exists and if the flow is
Anosov, then necessarily ker(λ) = Es ⊕Eu. Thus, an Anosov flow is contact if and only if its associated
1-form is a contact form. Let us briefly recall an important result by Poincaré on measure-preserving
flows. Afterwards, we will explore an application of this result to contact flows.

Theorem 1.23 (Poincaré Recurrence Theorem). If φt is measurable with respect to some σ-algebra A
and preserves a finite measure µ on A, then for any A ∈ A and any T ≥ 0 there exists a measurable
subset RA,T of A of measure µ(RA,T ) = µ(A) such that for every x ∈ RA,T there is a time t ≥ T with
φt(x) ∈ A.

Proof. Consider the set

RA,T =
⋃
k≥1

φ−kT (A),

which is measurable by the hypothesis on φt, and define B = A \RA,T . Then x ∈ φ−jT (B) if and only if
φjT (x) ∈ A and if for all k ≥ 1 we have φ(j+k)T (x) /∈ A. In particular, φ−iT (B) and φ−jT (B) are disjoint
for i 6= j. Since µ is finite and preserved by φt, it follows that µ(B) = 0.

Corollary 1.24. A contact Anosov flow is transitive.

Proof. If λ denotes the associated 1-form of the flow, then λ∧ (dλ)n defines a φt-invariant finite measure
on the Borel-σ-algebra on M via integration. By the Poincaré Recurrence Theorem, the non-wandering
set is M . Thus, the Spectral Decomposition is trivially {M} and the statement follows.
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Now that we established transitivity of contact Anosov flows, corollary 1.16 comes into play. Namely,
a contact Anosov flow is either mixing or a suspension. As mentioned in the beginning, contact flows are
supposed to be in a way “opposite” to suspensions. Let us verify this:

Lemma 1.25. A contact Anosov flow is never a suspension. In dimension three, no time-change of a
contact Anosov flow is a suspension.

Proof. As used before, if it was a suspension, then the tangent bundle of the fibers from the suspension
structure must coincide with Es ⊕ Eu. Then the associated 1-form must be exactly the pull-back of the
canonical volume form on the base circle of the suspension structure. However, the former is contact
while the latter is closed. This proves the first statement. Now suppose we are in dimension three and
there is a contact Anosov flow with a time-change that is a suspension. Let λ and λ′ denote the associated
1-forms, respectively, so that λ∧ dλ is a volume form and λ′ is closed. Then λ′ ∧ dλ is a volume form, as
well. This form is exact with primitive λ ∧ λ′, but, being a closed manifold, M cannot admit an exact
volume form by Stoke’s theorem.

Corollary 1.26. A contact Anosov flow is topologically mixing.

A standard example of a contact flow is the geodesic flow on a Riemannian manifold. Indeed, if λ0

denotes the canonical 1-form on the unit tangent bundle UM (see the appendix), then

(λ0)(x,u)(G) = 〈u,GH〉 = 1,

(dλ0)(x,u)(G,X) = −〈u,XV 〉 = 0

because XV ∈ span〈Ju〉, where J denotes the almost complex structure associated to the Riemannian
metric. The previous corollary together with theorem 1.6 yields:

Corollary 1.27. Geodesic flows on Riemannian manifolds of strictly negative sectional curvature are
topologically mixing.

Since time-changes have repeatedly popped up recently, let us have a closer look at them and their
role in the class of contact flows. The proof of proposition 1.1 shows how a time-change affects the
Anosov splitting. Since smoothness of the associated 1-form is linked to smoothness of the bundle
ker(λ) = Es ⊕Eu, we cannot expect a general time-change to preserve the contact property of a contact
Anosov flow. For a certain class of time-changes, this can be rectified, though. We say a time-change is
canonical if the infinitesimal generator of the new flow is given by 1

c+α(F )F for some closed 1-form α and

a constant c with c+ α(F ) never zero.

Proposition 1.28. In dimension three, a time-change of a contact Anosov flow preserves the contact
property if and only if the time-change is canonical.

Proof. Denote by λ the associated 1-form of the contact Anosov flow we start with. If the time-change
is canonical with F ′ = F

c+α(F ) for a closed 1-form α and a constant c, then cλ + α is a contact form

with Reeb vector field F ′. This shows one direction. Now assume F ′ is any time-change so that the
associated 1-form λ′ of the new flow is a contact form. Let f denote the function satisfying F = fF ′.
Then ιF ′(fλ ∧ dλ) = dλ shows that fλ ∧ dλ is invariant under the time-change φ′t. Both being volume
forms, λ′ ∧ dλ′ must be a multiple of fλ ∧ dλ by some smooth function c. This function is φ′t-invariant
since both volume forms are. Thus, c is constant along orbits and since transitivity implies the existence
of a dense orbit, we can conclude that c is constant. Then

dλ′ = ιF ′(λ
′ ∧ dλ′) = ιF ′(cfλ ∧ dλ) = cdλ.

In particular, α = λ′ − cλ is closed, and α and c are as needed.
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Contact flows are a special case of volume-preserving flows, i.e. flows that preserve a volume form.
Even more general, we may consider flows preserving a top-dimensional form that may not even be a
volume form. First of all, we can easily upgrade corollary 1.24 with the same proof:

Proposition 1.29. If an Anosov flow preserves a (continuous) non-trivial top-dimensional form, then
it is transitive.

Proof. Let Ω denote the non-wandering set and ω such a top-dimensional φt-invariant form. Since ω is
not identically zero, it defines a finite φt-invariant measure on the Borel-σ-algebra by integration. Denote
by S the set of points where ω vanishes. By the Poincaré Recurrence Theorem, M \ S ⊂ Ω. Therefore,
Ω contains an open set. By lemma 1.11, this enforces the Spectral Decomposition to be trivial, which
implies the statement.

For the next result, recall that given a Riemannian metric g there is a unique volume form volg
associated to this metric. The Riemannian measure of g is then given by µg(A) =

∫
A

volg.

Proposition 1.30. Let φt be an Anosov flow and ω be a (continuous) φt-invariant top-dimensional form.
Denote by S the set of points where ω vanishes. Then either S = M or S has Riemannian measure zero
for any Riemannian metric on M .

In order to prove this, we will first investigate the set R = {p ∈ M | limt→∞ Jt(p) = ∞}, where
Jt(p) = det(dφt)p is the Jacobian.

Lemma 1.31. Given an Anosov flow and any Riemannian metric on M , the set R has Riemannian
measure zero and is saturated by the global strong stable foliation.

Proof. Suppose for contradiction µg(R) > δ > 0 for some Riemannian metric g. Then Egorov’s theorem
implies the existence of a compact set K ⊂ R of measure µg(K) > δ on which the functions Jn diverge
uniformly (see theorem A.2). But the uniform divergence implies

∞ > µg(M) ≥ µg(φn(K)) =

∫
φn(K)

volg =

∫
K

φ∗nvolg ≥
(

inf
p∈K

Jn(p)

)
µg(K)→∞.

This proves the first assertion. For the second statement, note that for any point p ∈ M , any time
t = N + s, and with p′ = φs(p) we have

log(Jt(p)) = log
(
det
(
(dφ1)φN−1(p′) ◦ · · · ◦ (dφ1)p′ ◦ (dφs)p

))
=

N−1∑
k=0

log(det((dφ1)φk(p′))) + log(det((dφs)p))

=

N−1∑
k=0

log(J1(φk(p′))) + log(Js(p)).

By compactness, log(Jt(p)) as a function of [0, 1]×M is Lipschitz continuous with some Lipschitz constant
L. Now take any p0 ∈ R. Given any point q0 ∈W s(p0), we may take iterates q = φT (q0) and p = φT (p0)
so that q lies in a local strong stable manifold W s

ε (p) for some small ε > 0. This implies the existence of
constants C ≥ 1 and 0 < µ < 1 with dg(φt(p), φt(q)) ≤ Cµtε. Therefore, we can estimate for t = N + s
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with 0 ≤ s < 1, p′ = φs(p), and q′ = φs(q)

| log(Jt(p))− log(Jt(q))| ≤
N−1∑
k=0

| log(J1(φk(p′)))− log(J1(φk(q′)))|+ | log(Js(p))− log(Js(q))|

≤
N−1∑
k=0

Ldg(φk(p′), φk(q′)) + Ldg(p, q)

≤
N−1∑
k=0

LCµkε+ Lε ≤ LC 2− µ
1− µ

ε.

By definition of p0 ∈ R,

log(Jt(p)) = log(Jt+T (p0))− log(JT (p0))
t→∞−−−→∞.

Therefore, we also have

log(Jt+T (q0)) = log(Jt(q)) + log(JT (q0))
t→∞−−−→∞

and, hence, q0 ∈ R. This concludes W s(p0) ⊂ R, as desired.

Proof of proposition 1.30. Suppose that µg(S) > 0 for some Riemannian metric g on M . By the previous
lemma, µ(M \ R) = 1 and, hence, the set S ∩ (M \ R) is not empty. Take any point p in this set.
Also by the previous lemma, W s(p) ⊂ M \ R. We claim that W s(p) is contained in S, as well. Then
W sc(p) ⊂ S by invariance of ω. Proposition 1.29 and lemma 1.12 imply that W sc(p) is dense in M .
Given the claim and that S is closed, we conclude S = M . It remains to prove the claim. Since p ∈ S,
ωφt(p) = 0 for all times. Take any point q ∈ W s(p). By definition, φt(p) and φt(q) converge to each
other, so ||ωφt(q)|| → 0 as t → ∞. Jtn(q) is bounded on some subsequence (tn)n≥0 because q ∈ M \ R.
Hence, Jtn(q)||ωφtn (q)|| → 0 as n → ∞ and it suffices to verify ||ωq|| = Jt(q)||ωφt(q)|| for all t ∈ R. The
set of times t for which the equality holds is clearly closed and we will show that it is also open. Take
local (continuous) vector fields Xc, Xs, Xu that span Ec, Es, Eu, respectively, and are normalized by the
metric to have norm 1. By invariance, there are (continuous) functions c, s, u with dφt(X

c) = c(t)Xc and
similarly for Xs and Xu. Then

ωq(X
c, Xs, Xu) = c(t)s(t)u(t)ωφt(q)(X

c, Xs, Xu)

and the problem reduces to showing Jt(q) = c(t)s(t)u(t). If the vector fields were induced by coordinates
on M , then dφt would take the form of a diagonal matrix with entries c(t), s(t), u(t) in these coordinates
and we would be done. Even though, in general, such coordinates do not exist due to regularity issues,
we can smoothly approximate such coordinates to obtain the same conclusion.

The payoff of studying these flows that preserve a top-dimensional form is a very useful way in
dimension three for checking whether an Anosov flow is contact. Namely, we only need check smoothness
of the associated 1-form and rule out the suspension case; we may skip verifying whether the associated
1-form really is a contact form:

Theorem 1.32. Suppose we are in dimension three and have an Anosov flow whose associated 1-form
λ is smooth. If λ is not closed, then the flow is contact.

Proof. We need to show that λ ∧ dλ defines a volume form. Let vol be any volume form on M . Then
there exists a smooth function f with λ ∧ dλ = fvol. This function is not constantly zero for otherwise
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dλ = ιF (λ∧dλ) = 0, where we used ιF dλ = LFλ = 0. By proposition 1.30, the set f−1(0) has Riemannian
measure zero for any Riemannian metric. Define a measurable function by

L(p) =


− log(f(p)), if f(p) > 0,

0, if f(p) = 0,

log(f(p)), if f(x) < 0.

Since λ ∧ dλ is invariant under the flow, the function f is either strictly positive, constantly zero, or
strictly negative along a fixed orbit. Thus, restricted to a fixed orbit, the function L is given by either
log(f(p)), − log(f(p)), or 0. In particular, L is differentiable along the flow direction. Next, we use
invariance of λ ∧ dλ to compute

0 = LF (fvol) = f(LFvol) + df(F )vol = (fD + df(F ))vol,

where D is the divergence of F with respect to vol, meaning that D is the smooth function specified by
LFvol = Dvol. Then dL(F ) = − 1

f df(F ) = D on the set f−1(R \ {0}) of full Riemannian measure. By a

theorem of Livsic ([HK90, Thrm. 2.1]), the function L has to be continuous. This implies that there can
be no point with f(p) = 0.

Remark 1.33. One can also show that it suffices to assume that λ is C1. Being in dimension three, this
enforces λ to be C∞. For a proof of this fact, see [HK90, Thrm. 2.3].

1.7 Hamiltonian Structures

In this chapter, we generalize the setup provided by contact flows. Suppose M has dimension 2n+ 1 and
comes equipped with a 2-form Ω. We call (M,Ω) a Hamiltonian structure if Ω is closed and the kernel of Ω
is an orientable 1-dimensional distribution. We call a vector field spanning this distribution a Reeb vector
field of the Hamiltonian structure and its flow a Reeb flow. Note that any Hamiltonian structure admits
many Reeb flows but any two Reeb flows are a time-change of each other. There are two interesting
specializations. A Hamiltonian structure (M,Ω) is stable if there exists a 1-form λ with ker(Ω) ⊂ ker(dλ)
and such that λ ∧ Ωn is a volume form. Such a 1-form is called a stabilizing 1-form for (M,Ω). When
a stabilizing 1-form λ is fixed, then there is a distinguished Reeb vector field F specified by λ(F ) = 1.
We speak of the Reeb vector field and the Reeb flow if the stabilizing 1-form is understood. Further,
(M,Ω) is HS-contact if it admits a primitive λ of Ω so that λ ∧Ωn is a volume form. In particular, such
a Hamiltonian structure is always stable. As a motivation for introducing stable Hamiltonian structures
as a generalization of contact structures, let us remark that the Weinstein conjecture holds true for any
stable Hamiltonian structure in dimension three assuming that M is not a torus bundle over the circle
([HT09, Thrm. 1.1]).

Remark 1.34. We use the word “HS-contact” due to the following interplay of notation, which might
be misleading: Suppose we fix a Reeb flow φt of a Hamiltonian structure (M,Ω). Then

(M,Ω) is HS-contact ⇒ φt admits a time-change that is contact ⇒ (M,Ω) is stable.

In the first implication, we cannot guarantee that φt itself is contact. Furthermore, in general, each
implication cannot be reversed. For instance, we cannot conclude from φt being contact that (M,Ω) is
HS-contact (due to the restriction dλ = Ω).

Since any two Reeb flows of a Hamiltonian structure (M,Ω) are time-changes of each other, we can
call (M,Ω) Anosov if some (any) Reeb flow is Anosov. Our main interest focuses on Anosov stable
Hamiltonian structures. An obvious question is when a stable Hamiltonian structure is HS-contact.
In the Anosov case, there are some conditions on the Anosov splitting under which stability implies
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1.7 Hamiltonian Structures

HS-contact, see [MP10, Thrm. A]. In dimension three, the picture simplifies greatly. This is due to dλ
necessarily being a multiple of Ω by some smooth function. Let us exploit the 3-dimensional case in more
detail. Suppose M is a surface bundle over S1. Then any non-degenerate 2-form on the surface gives rise
to a Hamiltonian structure on M and the pull-back of any volume form on S1 is a stabilizing 1-form.
This stabilizing 1-form is closed. We know from the section on suspension flows that the converse holds,
too:

Proposition 1.35. Suppose (M,Ω) is a stable Hamiltonian structure in dimension three that admits a
closed stabilizing 1-form. Then M admits the structure of a fiber bundle over S1 with the following prop-
erty: The pull-back λ of the canonical volume form on S1 to M is a stabilizing 1-form for Ω. Furthermore,
if φt denotes the Reeb flow of (λ,Ω), then (M,φt) is a suspension.

Proof. The proof is essentially the one of corollary 1.21 but that we have a stable Hamiltonian structure
gives us more information. Before, we could only qualitatively say that there is a time-change that is a
suspension. With the stable Hamiltonian structure, we can pinpoint this time-change. We reproduce the
argument here. Take any closed stabilizing 1-form for (M,Ω). Lemma 1.18 states that we can approximate
this form (in the C0-topology) by a closed 1-form λ′ with rational periods. If we are sufficiently close,
then the new form λ′ remains a stabilizing 1-form for (M,Ω). Proposition 1.20 provides the bundle
structure over S1 whose fibers are the leaves of the foliation integrating ker(λ′) (which exists by theorem
1.17). Moreover, it states that λ′ is a positive multiple of λ (which, in particular, implies that λ is a
stabilizing 1-form for (M,Ω)). Let L be a fiber, i.e. a leaf of the foliation integrating ker(λ′) = ker(λ).
We claim that L is a section of φt. Indeed, the transversality is clear because L integrates the kernel of
λ and φt is the Reeb flow of the latter. Secondly, since λ is the pullback of the canonical volume form
on S1, the projection of the flow to the base must be the translation x 7→ x+ t (mod 1). Therefore, any
orbit starting in L returns to L after time 1. Given the claim, φt must be the suspension flow of the
diffeomorphism of L given by the time-1 map.

Being able to detect suspensions, we can give the complete (simple) classification for the Anosov case
in dimension three:

Theorem 1.36. Any Anosov stable Hamiltonian structure in dimension three is either a suspension or
HS-contact.

Proof. Suppose (M,Ω) is an Anosov stable Hamiltonian structure. If it admits a closed stabilizing 1-form,
then we are in the suspension case by proposition 1.35. If not, let λ denote a stabilizing 1-form and φt
the Reeb flow of (λ,Ω). By definition, there is a function f with dλ = fΩ. Since both λ and Ω are
φt-invariant, so is f . Proposition 1.29 tells us that φt is transitive because λ ∧ Ω is a volume form. By
transitivity and invariance, f must be constant. Thus, Ω = d( 1

f λ) arose from the contact form 1
f λ.

Corollary 1.37. When not in the suspension case, an Anosov Hamiltonian structure in dimension three
is stable if and only if it is HS-contact.

Remark 1.38. In particular, in the Anosov case in dimension three, the terminology becomes a little
less unfortunate because remark 1.34 evolves into:

(M,Ω) is HS-contact ⇐⇒ φt admits a time-change that is contact.

Moreover, any contact Reeb flow of (M,Ω) is a constant time-change of a Reeb flow induced by a stabilizing
primitive of Ω.

Proof. Suppose φt is a contact Reeb flow of (M,Ω) with associated 1-form λ. Then λ ∧ dλ = cλ ∧ Ω
for some smooth function c because both are volume forms. Further, both forms are φt-invariant and,
hence, so is c. By transitivity of the flow (corollary 1.24), c must be constant. Contracting with F yields
dλ = cΩ because ιF dλ = LFλ = 0. Thus, 1

cλ is a stabilizing primitive of (M,Ω).
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1.7 Hamiltonian Structures

Corollary 1.39. When not in the suspension case, an Anosov Hamiltonian structure (M,Ω) in dimension
three cannot be stable if Ω is not exact.

Remark 1.40. The converse is not true. We will encounter an example of an exact Anosov Hamiltonian
structure in dimension three that is not stable in remark 2.41.

Sometimes, being HS-contact is too strong of a property to ask for. A weaker but useful notion is the
following: A Hamiltonian structure (M,Ω) is virtually contact if there is a cover M̂ →M so that the lift
Ω̂ admits a primitive λ with ||λ||∞ < ∞ and infx∈M̂ |λx(F̂ (x))| > 0 in some (any) lifted metric, where

F̂ is the lift of some (any) Reeb vector field of (M,Ω). That λ ∧ Ω̂n is a volume form is implicit in the
definition because λ(F̂ ) never vanishes. In particular, if (M,Ω) is HS-contact, then it is virtually contact,
and if it is virtually contact, then the lifted Hamiltonian structure (M̂, Ω̂) is HS-contact. In general, the
reverse implications do not hold as we will find counter-examples in corollary 2.44. In the next chapter,
we will discuss in detail a class of examples of Hamiltonian structures and their respective specializations.
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2 Magnetic Flows

2.1 Perturbing Geodesic Flows

In this chapter, we will perturb geodesic flows by introducing a magnetic field. This can be done on any
manifold, but we are interested in the case of an oriented closed surface Σ equipped with a Riemannian
metric g. We will use the notation 〈·, ·〉 for the metric, denote its Gaussian curvature by K, and denote
the corresponding Levi-Civita connection by ∇. Let λ0 and ω0 denote the canonical forms on TΣ from
the appendix and let σ denote a (necessarily closed) 2-form on Σ. The new 2-form

ω = ω0 + π∗σ

is called a twisted symplectic form. Indeed, this is a symplectic form on TΣ as it is obviously closed and
we can easily check that it is also non-degenerate. If ω(X,Y ) vanishes for all vectors Y on TΣ, then the
horizontal component of X must be 0 since the right hand side in

〈XH , YV 〉 − 〈XV , YH〉 = −σ (XH , YH)

is independent of YV . But then ω(X,Y ) = 0 for all Y amounts to ω0(X,Y ) = 0 for all Y , which implies
X = 0 by non-degeneracy of ω0. Thus, a twisted symplectic form is symplectic. A smooth function
T ∗Σ ∼= TΣ→ R is called a Hamiltonian. Usually, a suitable class of Hamiltonians is given by convex and
super-linear ones, but we will restrict our attention to the energy Hamiltonian given by

E : TΣ→ R, E(x, v) =
1

2
〈v, v〉

since it captures all the key concepts. By non-degeneracy, there exists a unique vector field F , namely the
symplectic gradient of E with respect to ω, specified by the property ιFω = dE. The flow φt generated
by F is called a magnetic flow (or twisted geodesic flow). Note that φt preserves both the Hamiltonian
and the twisted symplectic form as can be seen from Cartan’s formula:

LFE = ιF dE = ι2FE = 0 and LFω = dιFω = d2E = 0.

We can use non-degeneracy once more to find a unique bundle map Y : TΣ → TΣ, called the Lorentz
force1, that satisfies

σx(u, v) = 〈Yx(u), v〉.

We then get a representation of dE by

dE(X) = ω(F,X) = 〈FH , XV − Y (XH)〉 − 〈FV , XH〉,
= 〈FH , XV 〉 − 〈FV − Y (FH), XH〉.

Since we know that (dE)(x,v)(X) is just 〈v,XV 〉, we conclude that the vector field F can be written in
terms of the Lorentz force as

F (x, v) = (v, Yx(v)) .

We have not yet used that Σ is two-dimensional and oriented. Since Y must map a vector v into its
orthogonal complement v⊥, we can write the Lorentz force as

Y : TΣ→ TΣ, Yx(v) = s(x)Jv,

1The letter ‘L’ will be used later for the Lagrangian.
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2.1 Perturbing Geodesic Flows

where J is the almost complex structure of g that rotates a vector counter-clockwise by angle π/2 and
s is some smooth function on Σ. Therefore, if Ωarea denotes the area form of (Σ, g), i.e. the form
(Ωarea)x(u, v) = 〈Ju, v〉, then we get

σ = sΩarea.

We call s the magnetic magnitude. Note that s ≡ 0 corresponds to the geodesic flow. Since the Hamil-
tonian is constant along orbits of φt, the flow induces a well-defined restriction to any energy level of E.
Denote the level of energy k by Sk = E−1(k). Let ι : Sk ↪→ TΣ denote the inclusion and set Ω = ι∗ω.
Note that (Sk,Ω) defines a Hamiltonian structure and the magnetic flow is one of its Reeb flows. We
will abusively write λ0 and ω0 for ι∗λ0 and ι∗ω0. Furthermore, from now on π denotes the projection
Sk → Σ, i.e. we replace the previous π by π ◦ ι. Lastly, for convenience, functions like s and K that are
defined on Σ may be regarded as functions on Sk by viewing them as s ◦ π and K ◦ π. Next, we would
like to analyze the cohomology class of Ω. Introduce new 1-forms on Sk by

µ(x,v)(X) = 〈Jv,XH〉 and ψ(x,v)(X) = 〈Jv,XV 〉.

Proposition 2.1 (Cartan’s structural equations). On the energy level Sk, the forms λ0, µ, and ψ satisfy

2kdλ0 = ψ ∧ µ,
2kdµ = −ψ ∧ λ0,

dψ = −Kλ0 ∧ µ.

Proof. We already know that dλ0 = −ω0. Moreover, an analogue computation as in the appendix shows
that

dµ(X,Y ) = 〈JXH , YV 〉+ 〈JXV , YH〉.

Using that XV and YV live in span〈Jv〉 for X,Y ∈ T(x,v)Sk, we find r, s ∈ R with XV = rJv and
YV = sJv. If r, s 6= 0, then

(ψ ∧ µ)(x,v)(X,Y ) = 〈Jv,XV 〉〈Jv, YH〉 − 〈Jv, YV 〉〈Jv,XH〉

= 〈Jv, rJv〉〈1
r
XV , YH〉 − 〈Jv, sJv〉〈−

1

s
YV , XH〉

= −|v|2ω0(X,Y ),

−(ψ ∧ λ0)(x,v)(X,Y ) = −〈Jv,XV 〉〈v, YH〉+ 〈Jv, YV 〉〈v,XH〉

= −〈Jv, rJv〉〈−1

r
JXV , YH〉+ 〈Jv, sJv〉〈−1

s
JYV , XH〉

= |v|2dµ(X,Y ).

The computation is even simpler if r or s is zero. Since |v|2 = 2k on Sk, this establishes the first two
equations. For the third, begin by observing 〈v, w〉Jv− 〈Jv,w〉v = 2kJw for any v ∈ Sk. Hence, we find

(λ0 ∧ µ)(x,v)(X,Y ) = 〈v,XH〉〈Jv, YH〉 − 〈v, YH〉〈Jv,XH〉

=
〈(
〈v,XH〉Jv − 〈Jv,XH〉v

)
, YH

〉
= 2k〈JXH , YH〉 = 2kπ∗Ωarea(X,Y ).

Thus, it suffices to show that dψ = −2kKπ∗Ωarea. That this equation holds on the unit tangent bundle,
i.e. for k = 1

2 , is due to ψ being the connection 1-form (by definition). Let ι0 : UΣ ↪→ TΣ and ι : Sk ↪→ TΣ
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2.1 Perturbing Geodesic Flows

denote the inclusions and consider the maps h : Sk → UΣ and j : TΣ → TΣ given by h(x, v) = (x, v√
2k

)

and the same formula for j so that ι = j−1 ◦ ι0 ◦ h. Then

−Kι∗π∗Ωarea = −Kh∗ι∗0π∗Ωarea = h∗ι∗0dψ = ι∗j∗dψ.

Therefore, we only need to verify j∗dψ = 1
2kdψ. Introduce vector fields on TΣ by

G(x, v) = (v, 0), H(x, v) = (Jv, 0), V (x, v) = (0, Jv).

Note that they form a basis of TSk. Restricted to Sk, they are the vector fields dual to λ0, µ, and ψ, up
to a factor 2k. In particular, since we already know dψ = −Kλ0 ∧µ on S 1

2
, we find [G,H] = KV on S 1

2
.

Using

G ◦ h−1 =
√

2k(dh−1)(G), H ◦ h−1 =
√

2k(dh−1)(H), V ◦ h−1 = (dh−1)(V ),

we conclude that

[G,H] ◦ h−1 = 2k(dh−1)([G,H]) = 2k(dh−1)(KV ) = 2kK(V ◦ h−1),

i.e. [G,H] = 2kKV on Sk. We are finished since

(dψ)(x,v)(G,H) = −ψ(x,v)([G,H]) = −ψ(x,v)(|v|2KV ) = −|v|4K,

(j∗dψ)(x,v)(G,H) = −ψj(x,v)(|v|2K(dj)(V )) = −|v|2Kψj(x,v)(V ◦ j) = −|v|4 K
2k
,

and both terms are zero for any other input consisting of combinations of basis elements G, H, V .

We partially already discussed the dual version of Cartan’s structural equations for vector fields. G,
H, and V are called the geodesic, the horizontal, and the vertical vector field, respectively. We noted that
they are the vector fields dual to λ0, µ, and ψ, up to a factor 2k, when restricted to Sk.

Corollary 2.2 (Cartan’s structural equations, dual version). On the energy level Sk, the vector fields G,
H, and V satisfy

[H,V ] = G,

[V,G] = H,

[G,H] = 2kKV.

The interesting bit is to see how the magnetic flow depends on both the energy level k and the
magnetic magnitude s. Actually, it suffices to only consider a single energy level. Indeed, suppose φt is
the magnetic flow of ω0 + sπ∗Ωarea on the energy level Sk. Then φt is the flow generated by the vector
field (v, s(x)Jv). Denote by φ′t the flow on UΣ = S 1

2
that is generated by (u, s′(x)Ju), i.e. the magnetic

flow of ω0 + s′π∗Ωarea. We will conjugate φ′t by the map h : UΣ → Sk that sends (x, u) to (x,
√

2ku).
Given a point (x, u) ∈ UΣ, denote by γ(x,u)(t) the unique curve on Σ that satisfies

γ(x,u)(0) = x, γ̇(x,u)(0) = u, ∇tγ̇(x,u)(0) = s′(x)Ju.

The existence of such curves is established as for geodesics. Then we can write the flow on UΣ as

φ′t(x, u) =
(
γ(x,u)(t), γ̇(x,u)(t)

)
.

Further, the conjugated flow is

h ◦ φ′t ◦ h−1(x, v) =
(
γ(x, v|v| )

(t),
√

2kγ̇(x, v|v| )
(t)
)
.
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2.2 Example: Constant Curvature and Constant Magnitude

The infinitesimal generator of this conjugated flow is exactly

∂

∂t

∣∣∣
t=0

(
h ◦ φ′t ◦ h−1(x, v)

)
=

(
v

|v|
,
√

2ks′(x)J
v

|v|

)
=

1√
2k

(
v,
√

2ks′(x)Jv
)
.

Thus, if we take s′(x) = s(x)√
2k

, then this flow is a constant time change of φt. In the next subchapter, we

will make use of this and carry out all the computations in the unit tangent bundle. However, afterwards
we will switch back to the general point of view and vary the energy level while the magnetic form is
fixed. Of course, the above also shows that this corresponds to scaling the magnetic magnitude by a
constant factor.
Note that the proof of the third structural equation revealed dψ = −2kKπ∗Ωarea. For the next three
subchapters, we add the standing assumption that Σ has genus at least two. Then the Euler class e =
[KΩarea] is non-zero and, hence, it generates H2(Σ). In particular, σ is of the form κKΩarea +dη for some
constant κ ∈ R and some 1-form η on Σ. Therefore, the last formula shows that, regardless of whether
σ is exact, the restriction of the twisted symplectic form always is exact with

Ω = −d
(
λ0 +

κ

2k
ψ − π∗η

)
.

2.2 Example: Constant Curvature and Constant Magnitude

In this chapter, we will restrict our attention to the energy level S 1
2

= UΣ and we want to explore the
special case in which both the magnetic magnitude s and the curvature K are constant. It is natural to
ask whether the above primitive λ = λ0 + κψ − π∗η of −Ω is a contact form. With κ = s/K, we now
have σ = κKΩarea, so we may take η to be zero. Then λ is reduced to λ0 + s

Kψ.

Proposition 2.3. Suppose the magnetic magnitude and the curvature are constant. If K + s2 6= 0, then
(UΣ,Ω) is HS-contact with primitive −λ = −(λ0 + s

Kψ). Further, the magnetic flow is contact with

contact form K
K+s2λ.

Proof. If K + s2 6= 0, then ιFλ = 1 + s
K 〈Ju, FV 〉 = K+s2

K is never zero, so λ ∧ Ω is a volume form.

Knowing that for most values of s and K the magnetic flow is contact, we can turn to the question
when the magnetic flow is Anosov. We already know the answer for the geodesic flow, i.e. the case
s = 0. The subbundle spanned by H and V is exactly the kernel of λ0. The kernel of λ = λ0 + s

Kψ is
spanned by H and Vs = sG −KV . The vector fields F,H, and Vs form a basis of TUΣ if and only if
K + s2 6= 0. Thus, assume exactly K + s2 6= 0 as we did in proposition 2.3. From the dual version of
Cartan’s structural equations we can deduce corresponding equations

[H,Vs] = −KG− sKV = −KF,
[Vs, F ] = −(K + s2)H = −(K + s2)H,

[F,H] = −sG+KV = −Vs.

Given some fixed (x, u) ∈ UΣ, abbreviate F (t) = F ◦φt(x, u) and likewise for H and Vs. Fix some initial
vector X ∈ TUΣ. Then there are some smooth functions a, y, and z such that the differential of the
magnetic flow can be written as

dφt(X) = a(t)F (t) + y(t)H(t) + z(t)Vs(t).

Applying dφ−t on both sides and differentiating with respect to time afterwards yields

0 = ȧ(t)dφ−t(F (t)) + a(t)dφ−t([F, F ](t))

+ẏ(t)dφ−t(H(t)) + y(t)dφ−t([F,H](t))

+ż(t)dφ−t(Vs(t)) + z(t)dφ−t([F, Vs](t)).
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2.2 Example: Constant Curvature and Constant Magnitude

Separating this into three equations, one for each basis element dφ−t(F (t)), dφ−t(H(t)), and dφ−t(Vs(t)),
gives rise to the system of ordinary differential equations

0 = ȧ(t),

0 = ẏ(t) + (K + s2)z(t),

0 = ż(t)− y(t).

Note that these equations hold without any assumption on Σ, φt, or Ω. Though, if we had not assumed
that s and K are constant, then in the middle term it would actually read s ◦φt and K ◦φt. Since we do
not stand a chance of solving such equations, it is reasonable for this discussion that s and K are taken
to be constant. If we assume in addition that K+ s2 is a negative number, then for the initial conditions
X± = ±

√
−(K + s2)H ∓ Vs we can find explicit solutions, namely

a±(t) = 0,

y±(t) = ±
√
−(K + s2)e∓

√
−(K+s2)t,

z±(t) = ∓e∓
√
−(K+s2)t.

In particular, the subbundles spanned by X+ and X− are invariant under dφt. As the flow also possesses
exponential growth on each subbundle, we find that φt is Anosov. In summary, we have proved the
following result:

Proposition 2.4. Suppose the magnetic magnitude and the curvature are constant. If K + s2 < 0, then
(UΣ,Ω) is Anosov. Moreover, the Anosov splitting of the magnetic flow is

Es = span
〈√
−(K + s2)H − Vs

〉
,

Eu = span
〈√
−(K + s2)H + Vs

〉
.

Let us now turn to the case K + s2 > 0. We wish to show that the magnetic flow is not Anosov
in this case. We will argue by contradiction. Hence, assume there was some Anosov splitting TUΣ =
Ec ⊕ Es ⊕ Eu. Since the flow is contact by proposition 2.3, Es and Eu must be contained in the kernel
of λ, which is span〈H,Vs〉. We claim that neither Es nor Eu may be equal to span〈Vs〉 at some point.
If this was the case for, say, Es at some point p = (x, u), then the weak stable subspace Escp equals
Ecp ⊕ span〈Vs(p)〉. In particular, we had

V (p) =
1

K + s2
(sF (p)− Vs(p)) ∈ Escp ,

but this contradicts the following transversality result:

Theorem 2.5. If the magnetic flow is Anosov, then at no point (x, u) ∈ UΣ is the vertical vector
V (x, u) = (0, Ju) contained in either the weak stable or the weak unstable subspace.

Loosely speaking, this transversality result describes that we can not hope to achieve hyperbolic
behavior merely by going around a fiber without moving the base-point. We postpone the proof of
this theorem to the next chapter in order to stay focused on the current discussion. By the preceding
argument, we can find smooth functions rs and ru on UΣ such that Es = 〈H+rsVs〉 and Eu = 〈H+ruVs〉.
Take some initial vector X = H(p) + rs(p)Vs(p) ∈ Esp. As before, we may take functions y and z with

dφt(X) = y(t)H(t) + z(t)Vs(t).
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2.2 Example: Constant Curvature and Constant Magnitude

Since dφt(X) ∈ Esφt(p) by invariance, there also is a function R with

dφt(X) = R(t) (H(t) + rs(t)Vs(t)) ,

where rs(t) = rs ◦ φt(p). Certainly, we must have y(t) = R(t). Notice that R(0) = 1 and R(t) can never
be zero. Now recall the differential equations

0 = ẏ(t) + (K + s2)z(t),

0 = ż(t)− y(t).

Differentiating both equations and uncoupling them yields

0 = R̈(t) + (K + s2)R(t).

However, we now concluded several properties of R that do not fit together: we know R(t) > 0, R̈(t) < 0,
and R(t) needs to decay exponentially as t grows since we started with X ∈ Esp. Such a function R does
not exist. Let us summarize our findings.

Theorem 2.6. Suppose the magnetic magnitude and the curvature are constant. If K + s2 6= 0, then
(UΣ,Ω) is HS-contact with primitive −λ = −(λ0 + s

Kψ). Further, the magnetic flow is contact with

contact form K
K+s2λ. If, in addition, K + s2 > 0, then (UΣ,Ω) is not Anosov. On the other hand, if

K + s2 < 0, then (UΣ,Ω) is Anosov and the Anosov splitting of the magnetic flow is

Es = span
〈√
−(K + s2)H − Vs

〉
,

Eu = span
〈√
−(K + s2)H + Vs

〉
.

Remark 2.7. If we are given a contact Anosov magnetic flow, then K and s must be constant (unless
s ≡ 0). Thus, a posteriori, these two assumptions are both necessary and sufficient for the Anosov
property in the contact case. We will prove this later in theorem 2.18.

Remark 2.8. We always worked with a higher genus surface. However, everything goes through un-
changed for a sphere (we only excluded this case for convenience). In this case, K + s2 > 0 is trivially
satisfied and we obtain: No magnetic flow on a sphere (in particular, not the geodesic flow) is Anosov.
Therefore, since we are mainly interested in Anosov flows in this thesis, we are not giving up on any
interesting examples when we exclude the sphere case. Hence, we will continue to do so.

We notice that the number
√
−K plays a crucial role in determining the behavior of the magnetic

flow. For a magnetic magnitude s below this critical value
√
−K we get an Anosov system, while for

larger magnitudes being Anosov is strictly excluded. This is a special instance of the more general notion
of Mañé’s critical value, which we will soon introduce and discuss in detail.
For completeness, let us quickly translate the above result into the setting for arbitrary energy levels
via the conjugacy we mentioned in the first subchapter. Introduce yet a new vector field on TΣ by
Vs,k(x, v) = (sv,−2kKJv). Then theorem 2.6 for energy levels reads:

Theorem 2.9. Suppose the magnetic magnitude and the curvature are constant. If 2kK + s2 6= 0, then
(Sk,Ω) is HS-contact with primitive −λ = −(λ0 + s

2kKψ) and the magnetic flow on Sk is contact with

contact form K
2kK+s2λ. If, in addition, 2kK + s2 > 0, then (Sk,Ω) is not Anosov. On the other hand, if

2kK + s2 < 0, then (Sk,Ω) is Anosov and the Anosov splitting of the magnetic flow on Sk is

Es = span
〈√
−(2kK + s2)H − Vs,k

〉
,

Eu = span
〈√
−(2kK + s2)H + Vs,k

〉
.
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2.3 A Transversality Result for Anosov Magnetic Flows

Proof. Note that ιFλ = 2k+ s2

K . Hence, λ is a contact form if 2kK+s2 6= 0, which recovers the condition
K+s′2 6= 0 with the relation s′ = s√

2k
. For the Anosov condition, we do not need to redo the calculations

as such is preserved by the conjugacy h and the constant time-change. Set s′ = s√
2k

. By theorem 2.6, if

K + s′2 > 0, then the magnetic flow does not admit an Anosov splitting. Write (x, u) = h−1(x, v), where
(x, v) ∈ Sk. If K + s′2 < 0, then the magnetic flow is Anosov and the splitting components are

Es(x,v) = span
〈

(dh)(x,u)

(√
−(K + s′2)H(x, u))− Vs′(x, u)

)〉
,

= span

〈√
−(2kK + s2)√

2k

1√
2k
H(x, v)− 1

2k
Vs,k(x, v)

〉

and likewise for the unstable splitting component.

2.3 A Transversality Result for Anosov Magnetic Flows

From here on, we no longer assume the curvature or the magnetic magnitude to be constant. We will
prove the transversality result we used in the previous chapter:

Theorem 2.10. If the magnetic flow is Anosov, then at no point (x, u) ∈ UΣ is the vertical vector
V (x, u) = (0, Ju) contained in either the weak stable or the weak unstable subspace.

We will need the classification theorem of Anosov flows on circle bundles in dimension three. This is
not restricted to magnetic flows. For a proof, see [Ghy84, Thrm. A].

Theorem 2.11. Suppose φt : M → M is an Anosov flow on a closed 3-manifold M that is a circle
bundle. Then there exists a closed surface Σ (of genus at least 2) such that M is a finite cover of the
unit tangent bundle UΣ, and φt is orbit equivalent to the lift of the geodesic flow on UΣ to M , where the
geodesic flow is understood to come from the Riemannian metric of constant curvature −1.

Corollary 2.12. Suppose φt : M → M is an Anosov flow on a closed 3-manifold M that is a circle
bundle. Then the flow is transitive.

Proof. This is immediate from corollary 1.27.

We can deduce another consequence about the existence of closed orbits of such flows. However, we
first need a lemma from algebraic topology.

Lemma 2.13. Given a circle bundle π : SΣ→ Σ, the induced map π∗ : H1(SΣ,Z)→ H1(Σ,Z) has kernel
the torsion subgroup of H1(SΣ,Z).

Proof. The Gysin sequence for the circle bundle π : SΣ→ Σ reads

· · · → H2(Σ,Z)
∩χ−−→ H0(Σ,Z)→ H1(SΣ,Z)

π∗−→ H1(Σ,Z)→ 0,

where χ denotes the Euler class of the bundle. Since H2(Σ,Z) ∼= Z ∼= H0(Σ,Z) and the map ∩χ is
multiplication with the euler characteristic 2− 2g, we find that H1(SΣ,Z) ∼= Z2g ⊕ Z2g−2.

Corollary 2.14. Suppose φt : SΣ → SΣ is an Anosov flow on a circle bundle π : SΣ → Σ. Then any
homology class in H1(SΣ,Z)/ker(π∗) contains a closed orbit of φt.

Proof. Let Φ: SΣ → UΣ denote the orbit equivalence between the given flow and the geodesic flow
coming from constant curvature −1 provided by theorem 2.11. Consider the induced map on homology
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Φ∗ : H1(SΣ,Z) → H1(UΣ,Z). Being an isomorphism, it must map torsion subgroups into torsion sub-
groups but cannot map infinite subgroups into torsion subgroups. Thus, Φ factors to an isomorphism of
the free parts,

Φ′ : H1(SΣ,Z)/ker(π∗)→ H1(UΣ,Z)/ker(π0
∗),

where π0 denotes the projection of the unit tangent bundle. Now given c ∈ H1(SΣ,Z)/ker(π∗), consider
(π0
∗ ◦Φ′)(c) ∈ H1(Σ,Z). This homology class is known to contain a closed geodesic γ. The loop γm(t) =

Φ−1(γ(t), γ̇(t)) is then a closed orbit of the flow φt. In conclusion, we find that the homology class c has
the closed orbit γm as representative.

Let us now return to magnetic flows and tend to proving theorem 2.10. For the first bit, we do not
require the Anosov property. For (x, u) ∈ UΣ, consider the set of planes containing F , i.e.

Λ(x,u)(UΣ) =
{
W ⊂ T(x,u)UΣ

∣∣ dim(W ) = 2, F (x, u) ∈W
}
.

Denote the disjoint union over (x, u) of all these sets by Λ(UΣ). Each Λ(x,u)(UΣ) is diffeomorphic to
a circle and, in fact, Λ(UΣ) admits the structure of a trivial circle bundle over UΣ. Indeed, a global
trivialization is given by W 7→ ((x, u), θ(x,u)(W )), where (x, u) is the base-point in whose tangent space
W lives and θ(x,u) is the map that describes the plane W by the angle between W and the H,V -plane.
More precisely,

θ(x,u)(W ) = exp (2i · angle(W ; span(H,V ))) ,

where the angle is measured in [0, π). We will pay special attention to the sections H and V of the bundle
given by span〈F,H〉 and span〈F, V 〉, respectively. Abbreviate ΛH = H(UΣ) and ΛV = V(UΣ). Given
an element W ∈ Λ(x,u)(UΣ) not containing H(x, u), there is some real number m(W ) with

W = span〈F (x, u),m(W )H(x, u) + V (x, u)〉.

This defines a smooth map m from Λ(UΣ) \ ΛH into the real line. Observe that ΛV = m−1(0). Now fix
any point p0 = (x0, u0) ∈ UΣ and define m0(t) = m (dφt(V(p0))).

Lemma 2.15. It holds that ṁ0(0) = 1.

Proof. Similarly to before, we abbreviate F (t) = F (φt(p0)) as well as F = F (0) and likewise for H and
V . By definition, m0(t) is specified by

m0(t)H(t) + V (t) ∈ dφt(V(p0)) = span〈dφt(F ), dφt(V )〉.

Thus, there are some functions a and z so that

m0(t)H(t) + V (t) = a(t)dφt(F ) + z(t)dφt(V ).

Applying dφ−t on both sides and differentiating with respect to time afterwards yields

ṁ0(t)dφ−t(H(t)) +m0(t)dφ−t([F,H](t)) + dφ−t([F, V ](t)) = ȧ(t)F + ż(t)V.

We can evaluate at t = 0 and use m0(0) = 0 to find

ṁ0(0)H + [F, V ] = ȧ(0)F + ż(0)V.

The Lie bracket can be calculated as

[F, V ] = [G,V ] + [sV, V ] = −H − ds(V )V.

As F,H, V form a basis, we can extract the H component of the second-last equation to conclude
ṁ0(0)− 1 = 0.
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There is an induced flow on Λ(UΣ) given by (t,W ) 7→ dφt(W ). Let F ∗ denote its infinitesimal
generator. The lemma says that (dm)V(p0) maps F ∗(V(p0)) to 1. Another consequence of the above
lemma is that 0 is a regular value of m. In particular, we can equip ΛV = m−1(0) with the submanifold
structure from the regular value theorem. Combining the two assertions

ker(dm)V(p0) = Tp0ΛV and (dm)V(p0)(F
∗(V(p0))) = 1,

we find that ΛV is orientable as a submanifold of Λ(UΣ). As such, it defines a homology class in
H3(Λ(UΣ),Z) by means of its fundamental class. By duality, there is a dual cohomology class m in
H1(Λ(UΣ),Z).

Lemma 2.16. If a homology class c ∈ H1(Λ(UΣ),Z) can be represented by a submanifold2, then m(c) is
the intersection index of the submanifolds ΛV and c.

Proof. Abbreviate M = Λ(UΣ) and N = ΛV and let [M ] and [N ] denote the fundamental classes. Let

Ψ: H∗dR(M)→ H∗(M,R) ∼= Hom(H∗(M,Z),R), Ψ([ω]) =

(
σ 7→

∫
σ

ω

)
denote the deRham map. It is a classical result that this is an isomorphism, which, moreover, maps wedge
products to cup products. We wish to show that c 7→ m(c)−N · c is the zero map in Hom(H1(M,Z),Z).
There is an obvious inclusion Hom(H1(M,Z),Z) ↪→ Hom(H1(M,Z),R). Of course, it suffices to show that
the equality m(c)−N ·c ≡ 0 holds in H1(M,R). That m is the Poincaré dual of [N ] means m∩ [M ] = [N ].
Let τ be a closed 1-form with Ψ([τ ]) = m. Take an arbitrary closed 3-form ω and set α = Ψ([ω]). Using

Ψ([ω])([N ]) = α([N ]) = α(m ∩ [M ]) = (m ∪ α) ([M ]) = Ψ([τ ∧ ω])([M ]),

we find that
∫
N
ω =

∫
M
τ ∧ ω, i.e. τ is the Poincaré dual of the submanifold N in the deRham sense. As

a result from Differential Geometry,

m(c) = Ψ([τ ])(c) =

∫
c

τ = N · c.

Regard the weak stable subbundle Esc as a section of the circle bundle Λ(UΣ) → UΣ. Everything
we do from here on can be done likewise for the weak unstable subbundle. Being a section, Esc gives
rise to a cohomology class ν = (Esc)∗m in H1(UΣ,Z). In particular, given a closed curve γ, ν([γ]) is
the intersection index in Λ(UΣ) of ΛV and Escγ(S1). Now suppose γ is an arc of a φt-orbit and that ΛV
and Escγ(I) intersect at the point (x, u,W ), (x, u) = γ(0). This means that Esc(x,u) = W = V(x, u). As

Escγ(t) = dφt
(
Esc(x,u)

)
, the intersection index is exactly

ΛV · Escγ(I) =
d

dt

∣∣∣
t=0

m (dφt(V(x, u))) = 1.

In particular, for any closed orbit γ of φt we have ν([γ]) ≥ 0. Now we invoke the Anosov condition.

Lemma 2.17. If the magnetic flow is Anosov, then ν = 0 in H1(UΣ,Z).

Proof. Since ν ∈ Hom(H1(UΣ,Z),Z) must vanish on any torsion elements, it factors to define a map
ν′ : H1(UΣ,Z)/ker(π∗) and it suffices to show ν′ = 0. However, this is immediate from corollary 2.14 and
the observation that ν is positive on closed orbits of φt.

2It is a (non-trivial) fact that this is always the case in manifolds of dimension at least three ([Gei08, Prop. 3.4.2]).
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With all these preliminaries out of the way, we can finally prove the transversality result.

Proof of theorem 2.10. As always, we only write down the proof for the weak stable subspaces. Suppose
for contradiction that at some point p0 = (x0, u0) we have V (x0, u0) ∈ Esc(x0,u0). Since m0(0) = 0 and

ṁ0(0) 6= 0 by lemma 2.15, there is some ε-neighborhood of 0 with m0(t) 6= 0 for t ∈ (−ε, ε) \ {0}, i.e.

V (φt(p0)) /∈ dφt(V(p0)) = dφt(E
sc
p0) = Escφt(p0).

As this is an open condition, there are open neighborhoods U± of the points p± = φ±ε/2(p0) in which the
property remains true. Abbreviate U = φε(U−) ∩ U+. By corollary 2.12, p+ is in the non-wandering set
and, hence, there is some positive time T ′ > ε with φT ′(U) ∩ U 6= ∅, i.e. we can find a point p ∈ U with
φT ′(p) ∈ U . Setting T = T ′ − ε > 0, we obtain φT (p) ∈ φ−ε(U) ⊂ U−. Now let γ denote the closed path
constructed as follows: start at p0 and run to p+ along the orbit of p0; then run to p without leaving U+;
after that run to φT (p) along the orbit; then run to p− without leaving U−; finally, run back to p0 along
its orbit. Now, γ defines a closed curve with ν([γ]) ≥ 1 contradicting the previous lemma. Indeed, ΛV
intersects Escγ(S1) at p0 by hypothesis, and since γ is an arc of a φt-orbit near p0, the intersection index
there is 1. Moreover, inside U+ and U− there are no intersection points by choice of U±, and on the
remaining pieces of γ we run along an orbit in forward direction, so the contribution is non-negative.

2.4 Contact Anosov Magnetic Flows

As in the first chapter, let us add the contact property on top of the Anosov property. We mentioned
the following result in remark 2.7 but postponed its proof, which we will fill in next.

Theorem 2.18. If the magnetic flow on the unit tangent bundle is both Anosov and contact, then the
magnetic magnitude s must be constant. Further, if s is not constantly zero, then the curvature is constant,
as well.

Observe that we necessarily need to exclude s ≡ 0 to conclude that the curvature is also constant
because geodesic flows on manifolds of non-constant but strictly negative curvature provide counter-
examples. We remark that this theorem subsumes the result obtained in [Pat97, p. 872], namely that
σ cannot be exact in the contact Anosov case. We will deduce this theorem from the following result,
which can be found in [DP05, Thrm. B]:

Theorem 2.19. Suppose the magnetic flow on UΣ is Anosov. Let f be a smooth function and ν be a
smooth 1-form on UΣ. If there exists a smooth function g on UΣ with f(x) + νx(u) = dg(x,u)(F (x, u))
for any (x, u) ∈ UΣ, then f is constantly zero and ν is exact.

Before we can prove theorem 2.18, we first need another result from algebraic topology.

Lemma 2.20. The projection π : UΣ → Σ induces an isomorphism π∗ : H1(Σ,R) → H1(UΣ,R) by
pullback.

Proof. By the Universal Coefficients Theorem, it suffices to work with coefficients in Z. The Gysin
sequence for the bundle π : UΣ→ Σ reads

0→ H1(Σ,Z)
π∗−→ H1(UΣ,Z)→ H0(Σ,Z)

∪χ−−→ H2(Σ,Z)→ · · · ,

where χ denotes the Euler class of the bundle. From this sequence, we find that π∗ is an isomorphism if
and only if the map ∪χ is injective. Since H0(Σ,Z) ∼= Z, this amounts to χ being non-zero in H2(Σ,Z).
The latter is given because we excluded the torus case.

The second step in the proof of theorem 2.18 is the following lemma:
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Lemma 2.21. Suppose a time-change of the magnetic flow is both contact and Anosov with contact form
α. Then dα = cΩ for some non-zero constant c ∈ R.

Proof. We already exploited an argument like this several times in the first chapter. Since α ∧ Ω is a
volume form, there is a function c with α ∧ dα = cα ∧ Ω. Then c is φt-invariant since both α ∧ dα and
α ∧Ω are. The flow is transitive (corollary 2.12), so c must be constant. We can conclude the statement
by contracting with the infinitesimal generator F ′ of the time-change:

dα = ιF ′(α ∧ dα) = cιF ′(α ∧ Ω) = cΩ.

Proof of theorem 2.18. Suppose α is the contact form on UΣ for which the magnetic flow is the Reeb
flow. By the previous lemma, dα = cΩ for some c 6= 0. Recall that σ = κKΩarea + dη for a real number
κ and a 1-form η on Σ and, hence, −Ω admits the primitive λ = λ0 + κψ − π∗η. Then α+ cλ is a closed
1-form. By the algebraic topology lemma, there is a closed 1-form ρ and a smooth function g′ on Σ with
α + cλ = π∗ρ + dπ∗g′. Now set g = g′ ◦ π, f = 1 + c + cκs, and ν = −(cη + ρ), and let us verify that
these satisfy the hypothesis of theorem 2.19. Indeed,

dg(F ) = (α+ cλ− π∗ρ)(F ) = α(F ) + cλ0(F ) + cκψ(F )− cπ∗η(F )− π∗ρ(F ) = f + ν.

Thus, f is constantly zero and ν is exact. It follows that η is closed and that s is constant or κ is zero.
In particular, sΩarea = σ = κKΩarea so that s = κK. Therefore, even if κ is zero we conclude that s is
constant. Moreover, s = κK implies that K must be constant, as well, when s 6= 0.

Together with theorem 2.9 we get the following corollary:

Corollary 2.22. Suppose the magnetic form σ is not zero. Then the magnetic flow on the energy level
Sk is both contact and Anosov if and only if both the curvature K and the magnetic magnitude s are
constant and, moreover, if 2kK + s2 < 0.

When the curvature is not constant, the straight-forward computations from chapter 2.2 do not go
through. However, with a more elaborate use of Jacobi fields, it was proved that the Anosov condition
can be recovered. The following analogue of theorem 2.9 for non-constant curvature can be found as3

[Gou97, Thrm. 1].

Theorem 2.23. Suppose the curvature is strictly negative with supremum Kmax < 0 and the magnetic
magnitude is constant. If 2kKmax + s2 < 0, then the magnetic flow on the energy level Sk is Anosov.

Combining this result with theorem 2.18 yields the following corollary. We will revisit this negative-
example to HS-contact Hamiltonian structures later.

Corollary 2.24. Suppose the curvature is strictly negative but not constant with supremum Kmax < 0
and the magnetic magnitude is constant but not zero. Then the magnetic flow on the energy level Sk
is Anosov but not contact for any k > − s2

2Kmax
. Even more so, no time-change is contact. Therefore,

(Sk,Ω) is Anosov but not HS-contact.

Proof. The first statement is an immediate application of theorems 2.18 and 2.23. When we work with a
time-change, then the proof of the former goes almost through. Suppose α is the associated 1-form of the
contact time-change. We again obtain a non-zero constant c, a closed 1-form ρ, and a smooth function g
with α+ cλ = π∗ρ+ dg. Let F ′ denote the infinitesimal generator of the time-change. Define ν the same
way but set f = α(F ′) + c + cκs. Then dg(F ) = f + ν, as before, and theorem 2.19 tells us that f is
constant. In contrast to the statement of theorem 2.18, in this corollary we assumed that s is constant.
Thus, f being constant implies that α(F ′) is constant, i.e. that the time-change is trivial.

3In our context, the cited theorem reduces to the version we present because for the Lorentz force Y and for any vector
fields X and Z on Σ we have (∇XY )(Z) = ∇X(Y (Z))− Y (∇XZ) = ∇X(sJZ)− sJ∇XZ = (LXs)JZ.
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2.5 The Lagrangian Point of View

2.5 The Lagrangian Point of View

From here on, we will allow Σ to be a sphere or a torus. Suppose Σ̂ → Σ is a covering of Σ. Given any
object defined on Σ or TΣ, we will denote its pullback/lift by the same letter but with a hat on top.
We also pull back the Riemannian metric but this we will be implicit in the notation to keep things less
messy. Assume that σ̂ = dθ is exact, where θ is a 1-form on Σ̂. Consider the Lagrangian

L̂ : T Σ̂→ R, L̂(x, v) =
1

2
〈v, v〉 − θx(v).

A path x(t) in Σ̂ is said to satisfy the Euler-Lagrange equation associated to L̂ if

d

dt

∂L̂

∂v
(x(t), ẋ(t)) =

∂L̂

∂x
(x(t), ẋ(t)).

Let Ŷ : T Σ̂→ T Σ̂ denote the Lorentz force specified by 〈Ŷx(v), w〉 = dθx(v, w). Indeed, this is the lift of
the old Lorentz force Y on TΣ. We can use the Lorentz force to describe solutions of the Euler-Lagrange
equation.

Lemma 2.25. A path x(t) in Σ̂ satisfies the Euler-Lagrange equation if and only if it satisfies

∇tẋ(t) = Ŷx(t)(ẋ(t)).

Proof. Take the usual local coordinates (q, p) on the tangent bundle T Σ̂ ∼= T ∗Σ̂. Suppose θ is given in
local coordinates by

∑
j θj(q)dqj . Then the Lorentz force Ŷ 0 with respect to the standard inner product

can be written as matrix multiplication with

Ŷ 0
q = (∂kθj(q)− ∂jθk(q))j,k.

Note that the Lorentz force with respect to the given Riemannian metric g is Ŷ = G−1Ŷ 0, where G
denotes the matrix representing g in local coordinates. For a path q(t) we get the j-th vector entry

d

dt

(
∂

∂pj
θq(p)

∣∣∣
(q,p)=(q(t),q̇(t))

)
− ∂

∂qj
θq(p)

∣∣∣
(q,p)=(q(t),q̇(t))

=
d

dt
θj(q(t))−

∑
k

∂jθkq̇k(t) =
(
Ŷ 0
q(t)q̇(t)

)
j
.

Abbreviating G(t) = G(q(t)), the Euler-Lagrange equation becomes in local coordinates

d

dt

(
q̇(t)TG(t)

)
=
(
Ŷ 0
q(t)q̇(t)

)T
+

1

2

(
∂

∂q
〈p, p〉q

)T ∣∣∣
(q,p)=(q(t),q̇(t))

,

which is equivalent to

q̈(t) +G−1(t)

(
d

dt
G(t)

)
q̇(t)− 1

2
G−1(t)

(
∂

∂q
〈p, p〉q

) ∣∣∣
(q,p)=(q(t),q̇(t))

= Ŷq(t)q̇(t).

To finish the proof, we use the Christoffel symbols to verify that the left hand side is exactly ∇tq̇(t). Let
gij denote the matrix entries of G and gij the entries of G−1. Let us first compute the j-th vector entry
of the middle term:∑

i

gji(t)
∑
k

(
d

dt
gi,k(t)

)
q̇k(t) =

∑
i

gji(t)
∑
k

q̇k(t)
∑
l

q̇l(t)
∂

∂ql
gi,k(t)

=
∑
k,l

q̇k(t)q̇l(t)
∑
i

1

2
gji(t)

(
∂

∂ql
gi,k(t) +

∂

∂qk
gi,l(t)

)
.
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Then the j-th vector entry of the entire term can be written as

q̈j(t) +
∑
k,l

q̇k(t)q̇l(t)
∑
i

1

2
gji(t)

(
∂

∂ql
gi,k(t) +

∂

∂qk
gi,l(t)−

∂

∂qi
gk,l(t)

)
=q̈j(t) +

∑
k,l

q̇k(t)q̇l(t)Γ
j
k,l = (∇tq̇(t))j .

Recall that the infinitesimal generator of the magnetic flow on Σ was also given in terms of the Lorentz
force by (u, Yx(u)). Thus, the last lemma states that the projection of the lifted magnetic flow to Σ̂ is
exactly the flow induced by the Euler-Lagrange equation. This allows us to investigate the same flow
from two different point of views. There is yet another approach: instead of twisting the symplectic form
we can alter the Hamiltonian. Set

Ĥ : T Σ̂→ R, Ĥ(x, v) =
1

2
〈v + θx, v + θx〉.

Then Ĥ = Ê ◦ L̂−1, where L̂ denotes the Legendre transform

L̂ : T Σ̂→ T Σ̂, L̂(x, v) =
∂L̂

∂v
(x, v) = (x, v − θx).

The derivatives of Ĥ and L̂ are given by

(dĤ)(x,v)(X) = 〈v + θx, XV + (∇XHθ)(x)〉,
(dL̂)(x,v)(X) = (XH , XV − (∇XHθ)(x)) .

Noteworthy is the following geometric observation, which will be useful later.

Lemma 2.26. The Legendre transform L̂ is a symplectomorphism (T Σ̂, ω̂)→ (T Σ̂, ω̂0).

Proof. By the above formula for the derivative of the Legendre transform, we get

(L̂∗ω̂0)(X,Y ) = ω̂0(X,Y ) + 〈YH ,∇XHθ〉 − 〈XH ,∇YHθ〉
= ω̂0(X,Y ) + 〈YH ,∇XHθ〉 − 〈XH ,∇YHθ〉+ 〈∇XHYH −∇YH ,XH + [XH , YH ]︸ ︷︷ ︸

=0

, θ〉

= ω̂0(X,Y ) + LXH (θ(YH))− LYH (θ(XH)) + θ([XH , YH ])

= ω̂0(X,Y ) + π∗dθ(X,Y ) = ω̂(X,Y ).

The Legendre transform also carries dynamical meaning. Though, to exploit it, we first need to do
some more calculations.

Lemma 2.27. For any vectors u,w ∈ T Σ̂, it holds that

〈u,∇wθ〉 = 〈∇uθ, w〉 − 〈Y (u), w〉.

Proof. Let W be a vector field with W (x) = w and let ρt denote its flow. Take a path γ(s) with γ(0) = x
and γ̇(0) = u. Note that(

∇tdρt(u)
)
(0) =

(
∇t∂s(ρt ◦ γ)

)
(0)(0) =

(
∇s∂t(ρt ◦ γ)

)
(0)(0) =

(
∇uW

)
(x).
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In addition, we observe (ιW dθ)x(u) = −〈Y (u), w〉 and compute further

(dιW θ)x(u) =
d

ds

∣∣∣
s=0
〈θγ(s),W (γ(s))〉 = 〈∇uθ, w〉+ 〈θx,∇uW 〉

Combining these equalities with Cartan’s formula yields

〈∇uθ, w〉+ 〈θx,∇uW 〉 − 〈Y (u), w〉 = (dιW θ)x(u) + (ιW dθ)x(u)

= (LW θ)x(u) =
d

dt

∣∣∣
t=0

θρt(x)(dρt(u))

=
d

dt

∣∣∣
t=0
〈θρt(x), dρt(u)〉 = 〈∇wθ, u〉+ 〈θx,∇uW 〉.

We can consider the symplectic gradient FĤ of Ĥ with respect to the standard form ω̂0, i.e. the

unique vector field satisfying ιFĤ ω̂0 = dĤ. Then the flow generated by FĤ is exactly the conjugate of
the magnetic flow under the Legendre transform,

FĤ(x, v) =
d

dt

∣∣∣
t=0
L̂ ◦ φ̂t ◦ L̂−1(x, v) =

(
v + θx, Y (v + θx)− (∇(v+θx)θ)(x)

)
.

Indeed, with the short-hands u = v + θx and w = XH , the lemma shows

dĤ(x,v)(X) = 〈u,XV +∇wθ〉 = 〈u,XV 〉+ 〈∇uθ, w〉 − 〈Y (u), w〉 = ω̂0(FĤ , X).

In other words, if φĤt denotes the symplectic gradient flow of Ĥ with respect to ω̂0, then L̂ ◦ φ̂t = φĤt ◦ L̂.

Moreover, since Ĥ−1(k) = L̂(Ê−1(k)) = L̂(Ŝk), the restriction of φ̂t to Ŝk and the restriction of φĤt to
Ĥ−1(k) are also conjugated by L̂. Lastly, observe that

Ĥ(x, v) = 〈v, L̂(x, v)〉 − L̂(x, L̂(x, v)) = max
w∈TxΣ̂

〈v, w〉 − L̂(x,w) = L̂∗(x, v),

i.e. the new Hamiltonian is exactly the dual function of the Lagrangian.

2.6 Mañé’s Critical Values

In this section, we will fix the magnetic form σ and consider variations of the energy level. Using the
Lagrangian point of view, we can consider the action of L̂

AL̂ : AC → R, AL̂(γ) =

∫ T

0

L̂(γ(t), γ̇(t))dt,

where γ : [0, T ]→ Σ̂ is an element of the set AC = AC(Σ̂) of absolutely continuous curves in Σ̂. Absolute
continuity is the appropriate level of regularity to impose because it ensures that the derivative of γ exists
Lebesque-almost everywhere and that the integrand is Lebesque-integrable. Define the Mañé critical value
of the Lagrangian L̂ as

c(L̂) = inf
{
k ∈ R

∣∣ ∀ closed γ ∈ AC : AL̂+k(γ) ≥ 0
}

= sup
{
k ∈ R

∣∣ ∃ closed γ ∈ AC : AL̂+k(γ) < 0
}
.

The set in the second line is clearly an open set, so the supremum is never a maximum. Conversely,
the infimum is always a minimum (unless c(L̂) = ∞). Note that if we take a constant curve, then
AL̂+k(γ) = kT < 0 for k < 0. Thus, we necessarily have c(L̂) ≥ 0.
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2.6 Mañé’s Critical Values

Remark 2.28. Suppose Π: Σ̄ → Σ̂ is a cover. Since AL̄+k(γ) = AL̂+k(Π ◦ γ) for any closed absolutely

continuous curve γ in Σ̄, we find

c(L̄) = sup
{
k ∈ R

∣∣ ∃ closed γ ∈ AC(Σ̄) : AL̂+k(Π ◦ γ) < 0
}
≤ c(L̂).

In general, this inequality could be strict. However, if Π: Σ̄→ Σ̂ is a finite cover, then c(L̄) = c(L̂).

Proof. Indeed, if γ ∈ AC(Σ̂) satisfies AL̂+k(γ) < 0, then for any lift γ̄ to Σ̄ we have AL̄+k(γ̄) < 0, but γ̄
may not be closed. If the cover is finite, then concatenating finitely many lifts, we eventually obtain a
closed curve with negative action (since the action is additive with respect to concatenation) and, hence,
c(L̄) ≥ c(L̂).

Let AC(x, y) denote the subset of AC of curves that start at x and end at y. Then, we can define the
action potential

Φk(x, y) = inf
γ∈AC(x,y)

AL̂+k(γ) ∈ [−∞,∞).

Originally, the critical value was found as the unique number

c(L̂) = inf
{
k ∈ R

∣∣ ∀x, y ∈ Σ̂ : Φk(x, y) > −∞
}

= sup
{
k ∈ R

∣∣ ∀x, y ∈ Σ̂ : Φk(x, y) = −∞
}
,

which is the assertion of the first part of the lemma below. As before, the supremum is never a maximum
and the infimum is always a minimum (unless c(L̂) =∞).

Lemma 2.29. The critical value c(L̂) is the unique number in [0,∞] satisfying the following properties:
If k < c(L̂), then Φk(x, y) = −∞ for all x, y ∈ Σ̂. On the other hand, if k ≥ c(L̂), then Φk(x, y) > −∞
for all x, y ∈ Σ̂. Thus, for k ≥ c(L̂), it makes sense to say for all x, y, z ∈ Σ̂

1. Φk(x, z) ≤ Φk(x, y) + Φk(y, z), (triangle inequality),
2. Φk(x, x) = 0,
3. Φk(x, y) + Φk(y, x) ≥ 0,
4. Φk is locally Lipschitz.

If the cohomology class of θ contains a bounded representative, then Φk even is uniformly Lipschitz and,
moreover, Φk(x, y) + Φk(y, x) > 0 if x 6= y and k > c(L̂).

Proof. The triangle inequality in the first item simply follows from taking the concatenation of a curve
γ in AC(x, y) and a curve η in AC(y, z):

Φk(x, z) ≤ AL̂+k(γ ∗ η) = AL̂+k(γ) +AL̂+k(η).

Note that this makes sense even if one of the action potentials is −∞. To settle the first statement about
k < c(L̂), take some z ∈ Σ̂ and some γ ∈ AC(z, z) with AL̂+k(γ) < 0. Then, for any N

Φk(z, z) ≤ AL̂+k(γ
N times∗ · · · ∗ γ) = NAL̂+k(γ)

N→∞−−−−→ −∞.

As we showed item one also for the negative infinite case, we can conclude for any x, y ∈ Σ̂

Φk(x, y) ≤ Φk(x, z) + Φk(z, z) + Φk(z, y) = −∞.

Conversely, if Φk(x, y) = −∞ for some x, y ∈ Σ̂, then also

Φk(x, x) ≤ Φk(x, y) + Φk(y, x) = −∞.
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2.6 Mañé’s Critical Values

Hence, by definition of Φk(x, x), there is a curve γ ∈ AC(x, x) with AL̂+k(γ) < 0. Then k ≤ c(L̂), but

we even have a strict inequality as the supremum defining c(L̂) is never a maximum. Next, we prove
items two to four. Of course, they are trivial if c(L̂) = ∞. Thus, fix ∞ > k ≥ c(L̂). Item two is
basically obvious: by definition of the critical value, we surely have Φk(x, x) ≥ 0; on the other hand, by
taking a constant curve, AL̂+k(γ) = kT can be made arbitrarily small. The third item is an immediate
consequence of the first two. For the fourth, fix a relatively compact, open, geodesically convex, set U in
Σ̂. Then the term |L̂(x, v) + k| is bounded by some constant Q uniformly in {(x, v) | x ∈ U, |v| ≤ 1}, by
compactness. Let T = dist(x1, x2), for x1, x2 ∈ U , and let γ be a unit speed geodesic in U between x1

and x2. Then

Φk(x1, x2) ≤ AL̂+k(γ) ≤ Qdist(x1, x2).

By the triangle inequality,

Φk(x1, y1)− Φk(x2, y2) ≤ Φk(x1, x2) + Φk(y2, y1) ≤ Q (dist(x1, x2) + dist(y2, y1))

= Qdist((x1, y1), (x2, y2)).

As the argument is symmetric in the given points, this proves the Lipschitz property of the action potential
inside U . Now suppose that the cohomology class of θ contains a bounded representative in the sense
that there exists a smooth function u on Σ̂ with supx∈Σ̂ |θx + (du)x| < ∞. By Stokes’ theorem, the

action of the Lagrangian L̂′ = L̂− du is the same as the action of L̂, so we may have worked with L̂′ to
begin with. This reduces us to the case in which θ itself is bounded. Then |L̂(x, v) + k| can be bounded
uniformly in {(x, v) | x ∈ Σ̂, |v| ≤ 1} and we conclude that Φk is uniformly Lipschitz in this case. Finally,
assume x 6= y and k > c(L̂). Note that boundedness of θ ensures that the Lagrangian is superlinear, i.e.
given any A > 0 there is some B > 0 (for instance, B = 2(A + ||θ||∞)2) with L̂(x, v) ≥ A|v| − B for
any (x, v) ∈ T Σ̂. Take a sequence of curves γn : [0, Tn]→ Σ̂ in AC(x, y) with AL̂+k(γn)→ Φk(x, y). The
periods Tn must be uniformly bounded from below for otherwise Tn → 0 on a subsequence and then

Φk(x, y) ≥ lim
n

∫ Tn

0

A|γ̇n(t)|dt−BTn + kTn ≥ A · dist(x, y)
A→∞−−−−→∞,

a contradiction. Take any 0 < T < lim infn Tn. Similarly, we can take a sequence ηn : [0, T ′n] → Σ̂ in
AC(y, x) with AL̂+k(ηn)→ Φk(y, x) and some 0 < T ′ < lim infn T

′
n. Then

0 ≤ Φc(L̂)(x, x) ≤ lim
n
AL̂+c(L̂)(γn ∗ ηn)

= lim
n
AL̂+k(γn) + (c(L̂)− k)Tn +AL̂+k(ηn) + (c(L̂)− k)T ′n

≤ Φk(x, y) + Φk(y, x) + (c(L̂)− k)(T + T ′)︸ ︷︷ ︸
<0

.

The next proposition gives a more concrete description of the critical value. Note that the expression
appearing in the supremum is exactly the new Hamiltonian Ĥ with input (du)x.

Proposition 2.30.

c(L̂) = inf
u∈C∞(Σ̂,R)

sup
x∈Σ̂

1

2
|(du)x + θx|2

= inf
{
k ∈ R

∣∣∣ ∃u ∈ C∞(Σ̂,R) : sup
x∈Σ̂

Ĥ(x, (du)x) < k
}
.
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2.6 Mañé’s Critical Values

Proof. The two infima are clearly the same. We first prove that the critical value is smaller or equal to the
right hand side. This is trivial if the right hand side is infinite. Thus, assume it equals some k ∈ [0,∞).
Then the infimum is a minimum and there is some function u ∈ C∞(Σ̂,R) for which supx Ĥ(x, (du)x) = k.
Take any curve γ ∈ AC(x, x) for arbitrary x ∈ Σ̂. Using that

(du)x(v)− L̂(x, v) ≤ L̂∗(x, (du)x) = Ĥ(x, (du)x) ≤ k

uniformly in v, we conclude for the action with the help of Stokes’ theorem

AL̂+k(γ) =

∫ T

0

(
L̂(γ(t), γ̇(t)) + k − (du)γ(t)(γ̇(t))

)
dt ≥ 0.

By definition, this implies c(L̂) ≤ k. Now suppose c(L̂) <∞. We want to prove that the right hand side is
at most c(L̂). Fix a point x0 ∈ Σ̂ and consider the (not necessarily smooth) function u(x) = Φc(L̂)(x0, x).

The idea is to show that Ĥ(x, (du)x) ≤ c(L̂) holds for almost every point and then argue that we can
smoothly approximate u in a well-behaved manner with respect to our desired inequality. As the action
potential is (locally) Lipschitz as shown in lemma 2.29, so is the function u. Hence, by Rademacher’s
theorem, u is differentiable almost everywhere. Let x be a point of differentiability for u. Take a
differentiable curve γ with initial data (x, v). Note that u(y)− u(x) ≤ Φc(L̂)(x, y) for any point y by the
triangle inequality. Then

(du)x(v) = lim sup
t→0

1

t

(
u(γ(t))− u(x)

)
≤ lim sup

t→0

1

t
Φc(L̂)(x, γ(t))

≤ lim sup
t→0

1

t

∫ t

0

(
L̂(γ(s), γ̇(s)) + c(L̂)

)
ds = L̂(x, v) + c(L̂).

As v was arbitrary,

Ĥ(x, (du)x) = max
v∈TxΣ̂

(du)x(v)− L(x, v) ≤ c(L̂).

The proof is finished if we can find a smooth approximation u′ of u satisfying supx Ĥ(x, (du′)x) ≤ c(L̂).
To this end, embed Σ in euclidean space RN and take a small tubular neighborhood U of Σ in RN . We
can define a projection ρ : U → Σ via the normal bundle of Σ. For the smoothing, take a smooth non-
negative function χ : R→ R with support in (−ε, ε) and

∫
RN χ(|y|)dy = 1. Next, define K : RN×RN → R

by K(z, y) = χ(|z − y|2). Recall that any Borel probability measure µ on Σ is uniquely determined by
its associated map C0(Σ,R)→ R sending φ to

∫
Σ
φdµ. Now consider the family µz of Borel probability

measures on Σ specified by ∫
Σ

φ dµz =

∫
RN

(φ ◦ ρ)(y) K(z, y) dy

for any φ ∈ C0(Σ,R). Note that the integral on the right hand side is well-defined for a sufficiently small
choice of ε since then K(z, y) = 0 whenever ρ(y) is not defined. We want to lift these measures to Σ̂. In
what follows, all balls are open and have radius ε. First observe that the support of µz is contained in the
ball Bz. Let Π denote the covering map of Σ̂→ Σ. For small ε, the restriction of Π to the ball Bx, x ∈ Σ̂,
is a diffeomorphism onto BΠ(x). Thus, we can define µ̂x =

(
Π|−1
Bx

)
∗ µΠ(x). Define the approximation

u′(x) =
∫

Σ̂
u dµ̂x. On any very small open set V in Σ̂, we can restrict Π suitably to a set which contains

all Bx, x ∈ V , (indicated by Π|) so that Π| is still a diffeomorphism onto its image and we can write

u′(x) =

∫
RN

(u ◦Π|−1 ◦ ρ)(y) K(Π(x), y) dy.
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2.6 Mañé’s Critical Values

From this expression we find that u′ is smooth because K is. It remains to verify supx Ĥ(x, (du′)x) ≤ k.
We begin by computing du′. We already observed that u is differentiable almost everywhere, which
implies that u is weakly differentiable with weak derivatives given by the almost everywhere defined du.
Let x1, x2 be a coordinate system on Σ̂ and take any coordinate system yj = zj , 1 ≤ j ≤ N , on RN with
dρ( ∂

∂yj
) = dΠ( ∂

∂xj
) for j = 1, 2. This way,

∂

∂yj
(u ◦Π|−1 ◦ ρ)(y) = (du)Π|−1◦ρ(y) ◦ dΠ|−1 ◦ dρ

( ∂

∂yj

)
=
( ∂

∂xj
u
)
◦ (Π|−1 ◦ ρ)(y)

Restricted to Σ, ρ is the identity, so dρ( ∂
∂yj

) = ∂
∂yj

on Σ. Therefore,

∂

∂xj
K(Π(x), y) = dzK ◦ dΠ

( ∂

∂xj

)
= dzK ◦ dρ

( ∂

∂zj

)
=

∂

∂zj
K(z, y)

∣∣∣
(z,y)=(Π(x),y)

Using ∂zjK(z, y) = −∂yjK(z, y), we compute

∂

∂xj
u′(x) =

∂

∂xj

∫
RN

(u ◦Π|−1 ◦ ρ)(y) K(Π(x), y) dy

=

∫
RN

(u ◦Π|−1 ◦ ρ)(y) ∂zjK(z, y)|(z,y)=(Π(x),y) dy

= −
∫
RN

(u ◦Π|−1 ◦ ρ)(y) ∂yjK(z, y)|(z,y)=(Π(x),y) dy

=

∫
RN

∂yj (u ◦Π|−1 ◦ ρ)(y) K(Π(x), y) dy

=

∫
RN

((∂xju) ◦Π|−1 ◦ ρ)(y) K(Π(x), y) dy

=

∫
Σ̂

(∂xju) dµ̂x.

Since Ĥ is convex, we conclude with Jensen’s inequality Ĥ(x, (du′)x) ≤ supy Ĥ(y, (du)y) ≤ c(L̂), where
the supremum is taken over all points of differentiability for u.

Remark 2.31 (The symplectic point of view). Recall that the graph of a 1-form on Σ̂ is a Lagrangian
submanifold of (T Σ̂, ω̂0) if and only if the 1-form is closed. In particular, the graph of an exact 1-form
is a Lagrangian submanifold, called an exact Lagrangian graph. Proposition 2.30 can be rephrased as
follows: c(L̂) is the infimum over all k ∈ R for which the sublevel set Ĥ−1(−∞, k) endowed with ω̂0|Ĥ−1(k)

contains an exact Lagrangian graph (namely, the graph of du).

By a similar expression as the one in the proposition, we can define a different critical value. This one
does not depend on the Lagrangian but only on the Hamiltonian (the Lagrangian depends on the choice
of primitive θ and the Riemannian metric while the Hamiltonian only depends on the metric). Set

c(Ê) = inf
Θ

sup
x∈Σ̂

Ê(x,Θx) = inf
Θ

sup
x∈Σ̂

1

2
|Θx|2,

where the infimum is taken over all possible primitives of σ̂. We call this the Mañé critical value of the
energy Hamiltonian Ê. By definition, c(Ê) is finite if and only if σ̂ admits some bounded primitive.

Remark 2.32. As in remark 2.28, suppose Π: Σ̄→ Σ̂ is a cover. Since any primitive of σ̂ can be pulled
back to a primitive of σ̄, we find

c(Ē) ≤ inf
dΘ=σ̂

sup
x∈Σ̄

1

2
|(Π∗Θ)x|2 = c(Ê).

Again, this inequality might be strict but only for infinite covers.
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2.6 Mañé’s Critical Values

The proof of this remark is a special instance of the theme of proposition 2.35.

Proof. To see this, suppose Π: Σ̄→ Σ̂ is a finite cover and Θ is a primitive of σ̄ = Π∗σ̂. By assumption,
the group Γ of deck transformations of Σ̄ → Σ̂ is finite. Set Θ′ = 1

|Γ|
∑
g∈Γ g

∗Θ. Then Θ′ descends to a

form on Σ̂ with the same ∞-norm as Θ since Γ acts by isometries. Moreover, Θ′ is a primitive of σ̂ since
dg∗Θ = g∗Π∗σ̂ = σ̂.

In contrast to the definition of c(Ê), in proposition 2.30 we minimize over all possible primitives Θ
for which Θ− θ is exact. In particular, we immediately see how the two critical values are linked.

Corollary 2.33.

c(Ê) = inf
[Θ]∈H1(Σ̂,R)

c(L̂−Θ).

If Σ̂ has trivial first cohomology group, then this reduces to c(Ê) = c(L̂). This is certainly the case
when we work with the universal cover Σ̃. For this, we introduce the notation cu = c(Ẽ) = c(L̃) and call
it the universal Mañé critical value.

Remark 2.34. Suppose briefly that the magnetic magnitude and the curvature are constant with K < 0.
Then the universal cover of Σ is the upper half plane H and the magnetic form lifts to sdx ∧ dy. By
proposition 2.30, the universal Mañé critical value is

cu = inf
u∈C∞(H,R)

sup
(x,y)∈H

1

2

∣∣(du)(x,y) + sxdy
∣∣2
hyperbolic

= inf
u∈C∞(H,R)

sup
(x,y)∈H

−1

2K

|∂xu|2eucl + |∂yu+ sx|2eucl

y2
= − s2

2K
,

where we used that a function u achieving this infimum is u(x, y) = −sxy. Observe that this is exactly
the distinguished value appearing in theorem 2.9, respectively 2.6.

More generally, other interesting covers are those with amenable group of deck transformations:

Proposition 2.35. Suppose Σ̄→ Σ̂ is a covering with amenable group of deck transformations Γ. Then
c(Ē) = c(Ê). In particular, if ∞ > k > c(Ē), then there exists a Γ-invariant primitive Θ′ on Σ̄ with
1
2 ||Θ

′||2∞ ≤ k.

Proof. We make a short remark concerning notation: since we usually denote simplices by σ, let us denote
the magnetic form σ by σm in this proof for increased readability. Since we already know c(Ē) ≤ c(Ê)
and the statement is trivial if c(Ē) =∞, suppose c(Ē) < k <∞. We need to show that c(Ê) ≤ k. The
basic idea is that amenability enables us to average a given form on Σ̄ so that it descends to Σ̂. However,
the technical realization is slightly more involved. Let

Ψ̄ : Ω∗(Σ̄)→ C∗(Σ̄) ∼= Hom(C∗(Σ̄),R), Ψ̄(ω) =

(
σ 7→

∫
σ

ω

)
denote the deRham map again, which induces an isomorphism in cohomology. Amenability of the group of
deck transformations Γ says that there exists a right-invariant mean, i.e. a non-negative linear functional
µ : L∞(Γ)→ R of norm one with µ(l · g) = µ(l), where l · g : h 7→ l(hg). The assumption k > c(Ē) implies
the existence of a primitive Θ of σ̄m with 1

2 ||Θ||
2 > k. Define a family of maps lσ : Γ→ R by sending g to

Ψ̄(g∗Θ)(σ). These maps are bounded since Γ acts by isometries and, hence, |lσ(g)| ≤ ||Θ||∞ · length(σ).
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2.6 Mañé’s Critical Values

Thus, it makes sense to define M̄ ∈ C∗(Σ̄) by M̄(σ) = µ(lσ). Let us compute its boundary. Since
dΘ = σ̄m is Γ-invariant, we obtain

l∂σ(g) =

∫
∂σ

g∗Θ =

∫
σ

g∗dΘ =

∫
σ

σ̄m,

i.e. l∂σ is constant in g and, therefore, ∂M̄(σ) = µ(l∂σ) = Ψ̄(σ̄m)(σ). Denote by Ψ̂ the deRham map for
Σ̂. By definition, M̄ is Γ-invariant as is σ̄m, so the last equation induces ∂M̂ = Ψ̂(σ̂m) on C∗(Σ̂). Since Ψ̂
induces an isomorphism in cohomology, there exists a smooth primitive α of σ̂m. Now ∂(M̂ − Ψ̂(α)) = 0,
so that the cohomology class of M̂ − Ψ̂(α) is the image of [β] under Ψ̂ for some closed 1-form β on Σ̂.
Denote by θ the primitive α+ β of σ̂m and by L̂ the Lagrangian defined by θ. Then given γ ∈ AC(Σ̂) of
length l(γ), γ : [0, T ]→ Σ̂, we can use∣∣∣ ∫

γ

θ
∣∣∣ = |Ψ̂(α+ β)(γ)| = |M̂(γ)| ≤ ||Θ||∞l(γ)

to find that the action of this Lagrangian on energy k is

AL̂+k(γ) =

∫
γ

(1

2
|v|2 − θ + k

)
>
l(γ)2

2T
− ||Θ||∞l(γ) +

T

2
||Θ||2∞

=
T

2

(
l(γ)

T
− ||Θ||∞

)2

> 0.

Since γ was arbitrary, we obtain c(L̂) ≤ k by definition. Finally, corollary 2.33 yields c(Ê) ≤ c(L̂) ≤ k,
as desired.

Among this class of covers is the abelian cover Σab, which has as fundamental group the commutator
subgroup of π1(Σ, ?). Indeed, the group of deck transformations of this cover is exactly the abelianization
of π1(Σ, ?), hence amenable.

Lemma 2.36. For the abelian cover, the induced map H1(Σ,R)→ H1(Σab,R) by pull-back is trivial.

Proof. We will neglect the base-points of the fundamental groups in this proof. Let h : π1(Σ)→ H1(Σ,Z)
and hab : π1(Σab) → H1(Σab,Z) denote the Hurewicz maps. Then the induced map h̃ : π1(Σ)ab →
H1(Σ,Z) from the universal property defining the abelianization is an isomorphism by Hurewicz’ theo-
rem. Let Π denote the covering map of the abelian cover. Denote by C(π1(Σ)) the commutator subgroup
of π1(Σ) so that Π∗ : π1(Σab) → π1(Σ) is an isomorphism onto C(π1(Σ)). Then the following diagram
clearly commutes:

π1(Σab) H1(Σab,Z) H1(Σ,Z)

C(π1(Σ)) π1(Σ) π1(Σ)ab

∼Π∗

hab Π∗

h

proj

h̃ ∼

The composition in the bottom line is the zero map, which implies that Π∗ : H1(Σab,Z) → H1(Σ,Z) is
the zero map. Now we are done because the pull-back map Π∗ : H1(Σ,R) → H1(Σab,R) is given by
(Π∗α)(σ) = α(Π∗σ), where σ ∈ H1(Σab,Z), by the Universal Coefficients Theorem.

We denote the abelian Mañé critical value by cab = c(Eab). The abelian cover is particularly inter-
esting in light of the following result:

Proposition 2.37. It holds that cab = c(Eab) = c(Lab) = c(E). In particular, σ is exact if and only if
σab admits a bounded primitive.
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Proof. If σab does not admit a bounded primitive, then c(Lab) = c(Eab) = c(E) = ∞. Otherwise,
c(Eab) <∞ and proposition 2.35 shows that σ is exact and, hence, the critical value c(L) is defined (for
any choice of Lagrangian). Let Θ be any closed 1-form on Σ. The above lemma states that the lift Θab is
exact. Thus, c(Lab) = c(Lab −Θab). Since Θ was arbitrary, remark 2.28, corollary 2.33, and proposition
2.35 imply

c(E)
(2.35)

= c(Eab)
(2.33)

≤ c(Lab) = inf
[Θ]∈H1(Σ,R)

c(Lab −Θab)
(2.28)

≤ inf
[Θ]∈H1(Σ,R)

c(L−Θ)
(2.33)

= c(E).

2.7 Distinguished Energy Levels

After investing a great deal of time in developing the theory surrounding Mañé’s critical values, we finally
harvest its payoff. We discussed earlier that for constant negative curvature and constant magnetic
magnitude all but one energy level are HS-contact (proposition 2.3). In the general setting, we have the
following result:

Proposition 2.38. For any k > cab, the energy level (Sk,Ω) is HS-contact.

Proof. By proposition 2.37, there is a primitive θ of σ with 1
2 ||θ||

2
∞ ≤ k − ε for some small ε > 0. Then

λ = −λ0 + π∗θ is a primitive of the twisted symplectic form Ω. Since 1
2 |v|

2 = k for vectors in Sk,

(λ0 − π∗θ) (F (x, v)) = |v|2 − θx(v) ≥ 2k − ||θ||∞|v|

≥ 2k −
√

2(k − ε)
√

2k > 0

and λ(F ) is never zero. Thus, ιF (λ ∧ dλ) = λ(F )Ω never vanishes and λ is a contact form.

Therefore, for k > cab, the magnetic flow admits a contact time-change. It is noteworthy that this
has to be a non-trivial (even non-canonical) time-change because the magnetic flow itself is never contact
by theorem 2.18 (unless in the specific cases s ≡ 0 or s and K both constant). This is in contrast to
corollary 2.24. Indeed, combining that corollary with the previous proposition yields:

Corollary 2.39. Suppose the curvature is strictly negative but not constant and the magnetic magnitude
is constant but not zero. Then cab =∞.

Proof. Since the geodesic flow is Anosov by the assumption on the curvature and since Anosov flows are
structurally stable, for sufficiently large energy levels we enter the Anosov case. But now corollary 2.24
tells us that (Sk,Ω) is never HS-contact, so we cannot have a finite abelian Mañé critical value by the
previous proposition.

There may be a gap between cab and cu. For energy values in this gap, being HS-contact is too strong
of a property to ask for. Indeed, we have the following result ([Con06, Thrm. B.1]):

Proposition 2.40. If Σ is not a torus and cu < k ≤ cab <∞, then (Sk,Ω) is not HS-contact.

Remark 2.41. In [PP97, Section 4], the authors construct an example with an exact magnetic field on a
genus two surface for which cu < ca and for which some energy levels in between are Anosov. By the above
proposition, the energy levels in between are not HS-contact. This provides an example as mentioned in
remark 1.40.

The remark shows that this gap is not pathological but may actually appear. Thus, for energy levels
in between cu and cab we need to study something weaker than HS-contact. To this end, we introduced
the weaker notion of being virtually contact.
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Proposition 2.42. For any k > cu, the energy level (Sk,Ω) is virtually contact.

Proof. By hypothesis, there is some small ε > 0 and a primitive θ of σ̃ with 1
2 ||θ||

2
∞ ≤ k − ε. We will

verify that −λ̃0 + π̃∗θ is a suitable contact form on S̃k. It certainly is bounded as both λ̃0 and θ are. As
in the last proposition, we conclude with the computation(

λ̃0 − π̃∗θ
)

(F̃ (x, v)) ≥ 2k −
√

2(k − ε)
√

2k > 0.

We obtained information about when an energy level is virtually contact, HS-contact, or not HS-
contact. However, we do not yet know anything specific about energy levels that are Anosov. It turns
out that the Anosov property is linked to the virtually contact one.

Proposition 2.43. If the magnetic flow on Sk is Anosov, then k > cu. In particular, any Anosov energy
level is automatically virtually contact.

We deduce that remark 2.41 provides us with examples in which virtually contact is a strictly weaker
notion than HS-contact. Further, this proposition gives us an upgrade of corollary 2.24, which yields
examples of the same kind:

Corollary 2.44. Suppose the curvature is strictly negative but not constant with supremum Kmax < 0
and the magnetic magnitude is constant but not zero. Then (Sk,Ω) is Anosov and virtually contact but
not HS-contact.

Before we can prove proposition 2.43, we need some auxiliary results. First, let us prove the following
geometric lemma about the weak (un)stable manifolds of an Anosov magnetic flow.

Lemma 2.45. If the magnetic flow on Sk is Anosov, then the weak (un)stable manifolds W sc(x, v)
(respectively Wuc(x, v)) are Lagrangian submanifolds of (TΣ, ω).

Proof. The proof is the same for the weak unstable as for the weak stable manifolds. Fix any point
(x, v) ∈ Σ. There are some functions r1, r2 on Σ so that for any point p ∈W sc(x, v)

TpW
sc(x, v) = Ecp ⊕ Esp = span〈F (p), r1(p)H(p) + r2(p)V (p)〉.

Now we just calculate

ω(F, r1H + r2V ) = −〈FV , r1HH〉+ 〈Y (FH), r1HH〉 = 0

and conclude that ω(X,Y ) = 0 for any X,Y ∈ TpW sc(x, v). This finishes the proof of the lemma.

One further result we need is an observation due to Ehresmann about transverse foliations of fiber
bundles inducing covering maps by restricting to leaves. For a proof, we refer to [CLN85, p. 91].

Proposition 2.46. Suppose p : E → B is a fiber bundle with compact fiber F . Assume further that we
are given a foliation of E of dimension dim(E)− dim(F ) that is transverse in the following sense: if Lx
denotes the leaf passing through x ∈ E, then TxE = TxFx ⊕ TxLx. Then for any leaf L, the restriction
p|L : L→ B is a covering map.

Combining lemma 2.45 and proposition 2.46 allows us to prove proposition 2.43:
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Proof of proposition 2.43. Consider the circle fibration π : Sk → Σ. Since T(x,v)π
−1(x) = span(V (x, v))

for any (x, v) ∈ Sk, the transversality result in theorem 2.10 implies that the foliation of weak stable
manifolds W sc of the magnetic flow is transverse to the above circle fibration in the sense that

T(x,v)Sk = T(x,v)π
−1(x)⊕ T(x,v)W

sc(x, v)

at any point in Sk. Consider the universal cover Σ̃ and the corresponding S̃k ⊂ T Σ̃. As the lift W̃ sc of
the weak stable foliation is exactly the weak stable foliation of the lifted flow, the transversality continues
to hold in the lift. By the result of Ehresmann, the restriction of π̃ to any leaf of W̃ sc is a covering
map. Being simply connected, Σ̃ only admits trivial coverings. Therefore, π̃|

W̃ sc(x,v)
: W̃ sc(x, v) → Σ̃ is

a diffeomorphism for any point (x, v) ∈ S̃k. In particular, for any (x, v) ∈ S̃k and any y ∈ Σ̃ there is a

unique point (y, µx,v(y)) in W̃ sc(x, v)∩ π̃−1(y). Now keep (x, v) fixed. Regard y 7→ µx,v(y) ∈ TyΣ̃ ∼= T ∗y Σ̃

as a 1-form on Σ̃. Let us abbreviate µ = µx,v. By definition of µ, its graph in T Σ̃ is exactly W̃ sc(x, v).

Moreover, because π̃|
W̃ sc(x,v)

is a diffeomorphism, it follows that µ inherits the smoothness from W̃ sc(x, v)

and that the submanifold structure, which W̃ sc(x, v) is given, coincides with the graph manifold structure

from µ. We showed in lemma 2.45 that W̃ sc(x, v) is a Lagrangian submanifold of (T Σ̃, ω̃). Recall that the
Legendre transform L̃ is a symplectomorphism (T Σ̃, ω̃)→ (T Σ̃, ω̃0) with L̃(S̃k) = H̃−1(k) (lemma 2.26).

Thus, L̃(W̃ sc(x, v)) ⊂ H̃−1(k) is a Lagrangian submanifold of (T Σ̃, ω̃0) and it is the graph manifold of the
1-form µ− θ. Since the graph of a 1-form is a Lagrangian submanifold of (T Σ̃, ω̃0) if and only if the form
is closed, µ−θ must be closed. As Σ̃ has trivial first cohomology, µ−θ even is exact. We have now shown
that H̃−1(k) contains an exact Lagrangian graph, namely L̃(W̃ sc(x, v)). The symplectic characterization
of the critical value, i.e. remark 2.31, yields k ≥ cu. Since Anosov flows are structurally stable, the
magnetic flow on the energy level Sk′ is also Anosov for any k′ sufficiently close to k. Therefore, we could
have done the entire argument with k′ instead of k to find k > k′ ≥ cu.

We found in remark 2.34 that the universal Mañé critical value is −s
2

2K in the case of constant negative
curvature and constant magnetic magnitude. Further, theorem 2.9 and proposition 2.40 imply that
cab = cu. The results about the various energy levels obtained in this section recover the observations
made in theorem 2.9. However, we actually have not recovered all the information since we did not find
out that any energy level above cu is Anosov or that any energy level below cu is HS-contact. To give
an example that the less hands-on approach via Lagrangian dynamics is a strong tool nonetheless, let us
finish the discussion about magnetic flows by verifying that we did not pass on any interesting Anosov
flows by excluding the torus case in the first few chapters.

Corollary 2.47. A torus does not admit an Anosov magnetic flow.

Proof. By proposition 2.43, it suffices to show that cu = ∞. The universal cover of a torus T is the
euclidean plane Π: R2 → T and a Riemannian metric on T lifts to k(x, y)|| · ||eucl for some bounded
function k. A primitive of Π∗(sΩarea) is given by fdy, where f(x, y) =

∫ x
0

(s◦Π)(x′, y)dx′. By proposition
2.30, we obtain

cu = inf
u∈C∞(R2,R)

sup
(x,y)∈R2

k(x, y)2

2

(
||∂xu||2eucl + ||∂yu+ f ||2eucl

)
.

This expression could only potentially be finite if ∂yu + f is bounded, but then u must be of the form∫ y
0

(g− f)dy′ for some bounded function g. Then ∂xu is of the form
∫ y

0
(∂xg)dy′+

∫ y
0

(s ◦Π)dy′, where the
first term is bounded, but the second term is unbounded in y, which in turn implies cu =∞.
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3 Anosov Dehn Surgery

In this chapter, we mean to inquire about the existence and construction of somewhat exotic Anosov flows
in dimension three. In particular, manifolds are assumed to be 3-dimensional in the entire chapter. As
discussed in the first chapter, the most prominent examples of flows are geodesic flows and suspensions.
It is a remarkable result that, topologically, these actually constitute a very large collection of Anosov
flows. Indeed, Ghys proved that any Anosov flow on a circle bundle has a finite cover that is orbit
equivalent to a geodesic flow (theorem 2.11, [Ghy84, Thrm. A]). At the other end of the spectrum, Plante
proved that any Anosov flow is orbit equivalent to a suspension if M has solvable fundamental group
or if the bundle Es ⊕ Eu is integrable (corollary 1.22, [Pla72, Thrm. 3.1], [Pla81, Thrm. B]). Seeing that
a lot of Anosov flows are in nature a geodesic flow or a suspension, it is natural to ask whether this
is the case for all Anosov flows. The answer is no and the first counter-example was constructed by
Handel and Thurston ([HT80]). Quickly afterwards, several other authors published their construction of
counter-examples including Goodman among others ([Goo83]). We can cast this question in a different
light using the notion of algebraic flows (definitions will follow). Geodesic flows and suspensions both
fit into this category, and Tomter proved that these are essentially the only ones (within the realm of
Anosov flows) by showing that any algebraic Anosov flow has a finite cover that is orbit equivalent to
one of these (thoerem 3.5, [Tom70]). Thus, the question becomes whether all Anosov flows are algebraic.
By now there are quite a few counterexamples and one of the most prominent types of counter-examples
are the ones living on graph-manifolds, meaning that they are obtained by a Dehn surgery. Handel and
Thurston’s as well as Goodman’s example are of this type. We will now discuss them and rely on work of
Foulon and Hasselblatt, who managed to encompass both counter-examples (and lots more) in a universal
formulation ([FH13]).

3.1 The General Surgery

To conduct Dehn surgery, all we need is an annulus. However, we do not only want to obtain a new
manifold but also a new Anosov flow. In order to do so, we will need an annulus A in M parametrized
by two coordinates s ∈ S1 and w ∈ (−ε, ε) so that the vector fields ∂

∂s and ∂
∂w are E-transverse. We

call a vector field E-transverse if it has non-zero stable and non-zero unstable component, i.e. if it is
not strictly contained in either the weak stable or the weak unstable subbundle. If such an annulus is
given, then we can apply the flow for small times to get a 3-dimensional open subset Λ parametrized
by r ∈ (−η, η), s, and w via (r, s, w) = φr((s, w)). In this domain, the infinitesimal generator of φt is
given by ∂

∂r by construction. Dehn surgery on the annulus A leaves the vector field ∂
∂r unchanged (as

discussed in the appendix), so that F continues to define a vector field on the new manifold inducing
a flow which agrees with φt outside the surgery domain. E-transversality will ensure that the new flow
remains Anosov (see proposition 3.2 below).
In specific examples later on, we will usually construct these charts as follows. We call a knot E-transverse
if its derivative is an E-transverse vector field. Now take any E-transverse knot γ in M (the existence
of these is not obvious but given in most cases) and pick a local E-transverse vector field in a small
neighborhood of the knot. Then this vector field induces a local flow ρt and we obtain a 2-dimensional
neighborhood of the knot by (s, w) = ρw(γ(s)). This can either be a Möbius strip or an annulus. In the
latter case, we have our desired chart. The parametrization (r, s, w) 7→ φr ◦ ρw ◦ γ(s) is smooth because
all involved maps are. Note that all admissible surgery domains can be build this way for s 7→ (0, s, 0)
defines an E-transverse knot and ∂

∂w a local E-transverse vector field.

Remark 3.1. Suppose the (un)stable subbundle is orientable. Given any E-transverse knot, we can
then always ensure the existence of a surgery domain. Indeed, we can consider local strong (un)stable
foliations along the knot and parametrize each by a ws and a wu coordinate, respectively. Then we build
an E-transverse vector field on a 2-dimensional neighborhood of the knot by taking a non-trivial convex
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3.1 The General Surgery

combination of ∂
∂ws

and ∂
∂wu

. This can be turned into a local E-transverse vector field on a small 3-
dimensional neighborhood simply by pushing it via dφt for small t. That the (un)stable subbundle is
orientable ensures that the resulting chart is an annulus and not a Möbius strip.

We claimed that E-transversality of ∂
∂s and ∂

∂w is sufficient to obtain a new Anosov flow. Let us first
give a heuristic argument for the Anosov property of the new flow and provide a rigorous proof afterwards.
Actually, the heuristic argument will not reveal why E-transversality is even needed and we need to wait
for the rigorous argument to understand the reason. Morally, the exponential growth of the new flow is
implied by the following three observations: firstly, outside the surgery domain, the new flow coincides
with the old one and inherits the exponential growth from the latter; secondly, the surgery domain is a
flow box and the flow will only stay inside for time 2η before it exits the surgery domain again; thirdly,
because the flow is transverse to the annulus, it cannot immediately enter back into the surgery domain
after it exited. In conclusion, as long as we flow outside the domain, we grow exponentially because the
old flow does. When we enter, we may not grow at all, but at least we can bound the time in which
we do not grow from above by the small constant 2η. After exiting the domain, we will stay outside
for a certain amount of time that we can bound from below, by transversality and compactness. Whilst
outside, we gain enough exponential growth to counter the fact we may enter back into the surgery
domain. Thus, by adjusting the constant and the exponent in the growth estimate for the old flow, we
can bound the plot of the growth of the new flow from below by another exponentially growing function.
This is an illustration why we can expect the new flow to be Anosov. However, the Anosov property
encompasses not only exponential growth but does this on an invariant splitting. To ensure the existence
of an invariant splitting with the desired exponential growth, we need the E-transversality. The formal
proof relies on the variant of the cone criterion using Lorentz forms (proposition 1.4).
Denote the shear map realizing the Dehn surgery by D : A → A. Then D can be written as D(s, w) =
(s+T (w), w) for some smooth twist function T : (−ε, ε)→ S1. We pose the (mild) assumption that T has
strictly monotone derivative. Let q ∈ Z denote the surgery coefficient and ψt : N → N the flow obtained
from the surgery on the new manifold N .

Proposition 3.2. For any q ≤ 0, the new flow ψt is Anosov.

Proof. E-transversality implies that Es and Eu have non-zero s and w direction when written as the
span of a linear combination of ∂

∂r , ∂
∂s , ∂

∂w . Thus, for a small choice of constant c > 0, the positive cone
of the form −cdr2 ± dwds contains Es or Eu. By proposition 1.4, the original flow φt has corresponding
quadratic Lorentz forms Qs and Qu. We may pick Qs and Qu so that their positive cones are also
contained in the positive cone of −cdr2 ± dwds. Let us deform Qs and Qu by “widening” them close to
the surgery domain so that they become −cdr2 ± dwds inside the surgery domain. Then invariance of
the cone field is still given since proposition 1.4 only requires it for times t > t0 for some t0 > 0. When
we enter the surgery domain, we widen the positive cones and they remain trivially invariant. When we
exit, the cones are not invariant for small times, but the Anosov property of φt ensures that the cones
get contracted until they fit into the old cone field. The time after which this happens can be bounded
from above, by compactness. Similarly, the growth conditions on φt in the cone fields are still satisfied
since these are also only required for times t > t0. This first argument is the crucial application of
E-transversality.
Starting from these deformed Lorentz forms, we will construct new quadratic Lorentz forms on the new
manifold obtained from the surgery. To this end, pick some smooth function ρ : R → R that is 1 on
(−∞, 0], is 0 on [η,∞), and is strictly monotone decreasing in between 0 and η. Define

Qs,− = −cdr2 − dwds, Qs,+ = −cdr2 −
(
dwds+ ρ(r)T ′(w)dw2

)
,

Qu,− = −cdr2 + dwds, Qu,+ = −cdr2 +
(
dwds+ ρ(r)T ′(w)dw2

)
,

For r < 0 we can use ρ ≡ 1 to compute

(id×D)∗Qs,− = −cdr2 − dw (ds+ T ′(w)dw) = Qs,+.
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and, similarly, (id×D)∗Qu,− = Qu,+. Moreover, Qs,− and Qu,− connect at r = −η neatly with Qs and
Qu, as well as Qs,+ and Qu,+ do at r = η since ρ is zero on [η,∞). Thus, the form P s defined by being
Qs outside the surgery chart, Qs,− on {r < 0}, and Qs,+ on {r > 0} is a well-defined quadratic form on
the new manifold N as is the analogously defined Pu. We will now verify the hypothesis of proposition
1.4 for these quadratic forms and the new flow ψt. Of the four assumptions, the second and third are
immediate. Let us check the fourth. As usual, we restrict our attention to the stable case and the other
case is dealt with analogously. The use of a flow box ensures that dψt is just the identity. Suppose we

are given a non-zero vector v ∈ Cs,+x , where x = (r, s, w) ∈ Λ, and write it as v = vr
∂
∂r + vs

∂
∂s + vw

∂
∂w .

This is equivalent to saying

0 ≤ Qs,+x (v) = −cv2
r −

(
vwvs + ρ(r)T ′(w)v2

w

)
.

In particular, vw 6= 0. Note that by the assumption that T ′ is strictly monotone, the hypothesis q ≤ 0 is
equivalent to saying T ′ < 0. Then, as long as ψt(x) remains in in the right side of the surgery chart,

Qs,+ψ−t(x) ((dψ−t)x(v)) = −cv2
r −

(
vwvs + ρ(r − t)T ′(w)v2

w

) T ′<0
≥ (ρ(r − t)− ρ(r))︸ ︷︷ ︸

>0

|T ′(w)|v2
w > 0,

which shows (dψ−t)x
(
Cs,+x \ {0}

)
⊂ Cs,+ψ−t(x) for all times t with ψ−t(x) ∈ {r > 0}. On the other side of

the surgery,

Qs,−x (v) = −cv2
r − vwvs = Qs,−ψ−t(x) ((dψ−t)x(v)) ,

i.e. dψ−t leaves the cones exactly invariant but does not contract them. This issue is again countered by
only requiring invariance for t > t0 and knowing that we have strict invariance inherited from φt outside
the surgery domain. This establishes assumption number four in proposition 1.4. The same argument
asserts the first hypothesis of the proposition. We already calculated that dψ−t is non-contracting on
the stable cone. Together with the discussion of the heuristic argument for exponential growth of ψt, we
conclude exponential growth in the cone field for times t > t0.

Remark 3.3. Note that the need for q ≤ 0 is a technical issue ensuring that we twist in the correct
direction in order not to counter the evolution of the Lorentz forms.

Remark 3.4. Since we can take the Lorentz forms for φt arbitrarily small outside the surgery domain,
we find that the Anosov splittings of ψt and φt coincide on M \ Λ = N \ Λ.

Example: Handel and Thurston

Handel and Thurston performed Dehn surgery on a geodesic flow living on the unit tangent bundle UΣ
of a closed oriented surface (Σ, g) of constant negative curvature ([HT80]). Let J denote the associated
canonical almost complex structure. Given any simple closed geodesic c, consider the knot in UΣ given
by γ(s) = (c(s), l0Jċ(s)), where l0 > 0 is taken so that l0|ċ| ≡ 1. This is an E-transverse knot by theorem
2.6. The same theorem shows that the vertical vector field V (x, u) = (0, Ju) is E-transverse. If ρt denotes
its flow, then we get a 2-dimensional neighborhood by (s, ν) = ρν(γ(s)) = (c(s), l0e

iνJċ(s)). Later on,
it will come in handy to perform a change of variables by w = 1

l0
cos(ν + π/2). Then the 3-dimensional

neighborhood is given by φr(c(s), l0e
i(ν(w)+π/2)ċ(s)). Note that using the exponential map we can write

down an explicit chart map by

Λ→ UΣ, (r, s, w) 7→
(

expc(s)

(
rl0e

i(ν(w)+π/2)ċ(s)
)
,
∂

∂r
expc(s)

(
rl0e

i(ν(w)+π/2)ċ(s)
))

.
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Actually, Handel and Thurston had no need for such an explicit description of their surgery chart, but
we will make use of it when we later study this example in light of Foulon and Hasselblatt’s surgery. In
that same instance we will also verify that the new flow ψt is volume-preserving. The former authors
used this surgery to produce the first non-algebraic Anosov flows. This requires picking a simple closed
geodesic c that is also separating. We will reproduce their argument that the resulting flow is no longer
algebraic further below.

Example: Goodman

Goodman also produced new flows by using Dehn surgery, but her construction works more generally
for any Anosov flow that admits a periodic orbit, not just for geodesic flows ([Goo83]). She constructs
her surgery domain as follows. Start with any periodic orbit of φt. Consider the toral boundary of a
small tubular neighborhood of this orbit. Given any point on the orbit, imagine plotting the unstable
subbundle on the x-axis, the stable subbundle on the y-axis, and the the flow direction running in z-
direction through the sheet. Then the flow lines starting north of the orbit will traverse in a hyperbolic
manner towards the y-axis in the south while expanding to the east along the y-axis (i.e. qualitatively
behave like the graph of 1/x). By deforming the torus in the upper right quadrant so that a small part
of its boundary looks like the graph of the identity function, it will become transverse to the flow in this
small part (see the pictures in [Goo83, p. 301] and [Bar17, p. 7]). We can parametrize this part by (−ε, ε)
and since we do this at any point of the orbit we obtain an annulus S1 × (−ε, ε). Because we performed
the deformation in the upper right quadrant, the two vector fields ∂

∂s and ∂
∂w are E-transverse. Goodman

then conducts Dehn surgery on this annulus.

3.2 Non-Algebraic Flows

In this section, we will reproduce the proof by Handel and Thurston that their new Anosov flows are
not algebraic. But first we need to introduce algebraic flows to begin with. We say that a flow on a
closed manifold is algebraic if the manifold can be written as Γ \G/K, where G is a Lie group, K < G
a compact subgroup, and Γ < G a discrete cocompact subgroup acting by left-multiplication, and if the
flow is given by ΓgK 7→ Γg exp(tα)K for some α in the Lie algebra associated to G. This class of flows
contains both geodesic flows and suspensions. The result by Tomter we announced in the introduction is
the following, see [Tom70, Thrm. IV+V] (this is not restricted to dimension three).

Theorem 3.5. Suppose we are given an algebraic Anosov flow. If the associated Lie algebra is semi-
simple, then the lift of the algebraic flow to some finite cover is C1-conjugate to the geodesic flow on the
unit tangent bundle of some closed manifold. On the other hand, if the associated Lie algebra is solvable,
then the lift of the algebraic flow to some finite cover is, up to a constant time-change, C1-conjugate to
the suspension flow of a bundle over the circle with fibers an infra-nilmanifold.

This theorem emphasizes that the existence of an algebraic Anosov flow is a serious constraint on
the underlying manifold. We will explore this knowledge to prove that our new flow cannot be algebraic
by investigating the new manifold N . Before that, let us extract a more concise statement suitable for
our purposes from the above theorem. We call a 3-manifold Seifert-fibered if it can be decomposed into
a disjoint union of circles such that for each fiber there is a tubular neighborhood diffeomorphic to the
torus obtained from D2 × [0, 1] by identifying D2 × {0} and D2 × {1} via a rational rotation; moreover,
we require the diffeomorphism to be fiber-preserving in the sense that D2 × {s} gets mapped to one of
the circles in the disjoint union. Thus, the above theorem translates to this corollary.

Corollary 3.6. Suppose we are given an Anosov flow in dimension three. If no finite cover of the
underlying manifold is homeomorphic to a Seifert-fibered manifold or a torus bundle over the circle, then
the flow is not algebraic.
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Proof. Since we are in dimension three, any real Lie algebra is either semi-simple or sovlable4 and, hence,
we can apply theorem 3.5. Either we have a lift conjugate to a geodesic flow, in which case we end up
with a Seifert-fibered manifold, or we have a lift conjugate to a suspension flow, in which case we end up
with a torus bundle over the circle by proposition 1.14.

Note that the first part of the corollary is essentially a negative analogue to Ghys’ theorem 2.11,
whereas the second part of the corollary together with the next lemma poses a negative analogue to
Plante’s theorem, [Pla81, Thrm. B]. We will use some tools from algebraic topology to reformulate the
conditions in the corollary to conditions on the fundamental group of the manifold.
First, we recall an essential ingredient from covering space theory. Suppose p : M̂ →M is a covering space
of a manifold M . Then we can consider the fundamental group of M̂ as a subgroup of the fundamental
group of M via the injective map induced by p. It follows from the classification of covering spaces that
p : M̂ →M is a finite cover if and only if π1(M̂, ?) is a subgroup of π1(M,?) of finite index.

Lemma 3.7. If M is a 3-manifold whose fundamental group contains no solvable finite index subgroup,
then no finite cover of M is homeomorphic to a torus bundle over the circle.

Proof. Suppose M̂ is a torus bundle over the circle. Then the long exact sequence in homotopy (neglecting
base-points)

· · · → π2(S1)→ π1(T 2)→ π1(M̂)→ π1(S1)→ π0(T 2)→ · · ·

becomes

0→ Z⊕ Z ↪→ π1(M̂)→ Z→ 0.

From this, we obtain an isomorphism π1(M̂)/(Z⊕Z)→ Z. Since the factor group is abelian, it is solvable,
as is Z. Then the fundamental group π1(M̂) itself must be solvable.

We can upgrade this to a statement about the existence of free subgroups of the fundamental group.
Here is the algebraic lemma enabling this:

Lemma 3.8. If H is a finite index subgroup of a group G and if F is a free subgroup of G, then H
contains a subgroup of F that is isomorphic to F .

Proof. This is basically obvious. Suppose that F is generated by the elements {gα}α ⊂ G. If for some
α we had gnα /∈ H for all n ∈ Z, then gnαH and gkαH are distinct elements of G/H for n 6= k. But this
contradicts the assumption that the index of H in G is finite. Hence, for all α there is some nα ∈ Z with
gnαα ∈ H, and the elements {gnαα }α generate a subgroup of H isomorphic to F .

Lemma 3.9. If M is a 3-manifold whose fundamental group contains a free non-abelian group, then no
finite cover of M is homeomorphic to a torus bundle over the circle.

Proof. By lemma 3.7, we need to show that the existence of a free non-abelian subgroup implies that
there cannot be any solvable finite index subgroup. Any group can be written as the quotient of a free
group by a normal subgroup. Since the alternating group A5 is the quotient of a free group with two
generators, any free non-abelian group has a quotient that is isomorphic to A5. In particular, as A5 is
not solvable, any free non-abelian group cannot be solvable. We can conclude with the previous algebraic
lemma.

We would also like to obtain conditions on the fundamental group that replace the hypothesis of
having no finite cover homeomorphic to a Seifert-fibered manifold. This is done as follows:

4For instance, this is a consequence of theorem 1.42 and proposition 1.43 in [Kna96]. Being in dimension three, the
hypothesis of the aforementioned proposition 1.43 are equivalent to having a degenerate Killing form.
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Lemma 3.10. Suppose that M is a 3-manifold whose fundamental group is infinite. If π1(M,?) has no
finite index subgroup that itself contains an infinite cyclic normal subgroup, then no finite cover of M is
homeomorphic to a Seifert-fibered manifold.

Proof. A result in [Sco83, Lem. 3.1] states that if M̂ is a Seifert-fibered manifold, then its universal cover
is homeomorphic to S3, R3, or S2×R. If the universal cover is the 3-sphere and, in particular, is compact,
then the fundamental group of M̂ is finite. In the other two cases, π1(M̂, ?) contains an infinite cyclic
normal subgroup as shown in [Sco83, Lem. 3.2].

In conclusion, we can rewrite corollary 3.6 as:

Corollary 3.11. Suppose the fundamental group of M contains a free non-abelian subgroup but does not
contain a finite index subgroup that itself contains an infinite cyclic normal subgroup. Then M does not
admit any algebraic Anosov flows.

Having set up the algebraic tools, we are ready to tackle our new manifold N .

Theorem 3.12. Suppose M is the unit tangent bundle UΣ of a negatively curved, oriented, closed,
surface Σ. If the knot along which we perform surgery projects to a separating curve, then the new flow
obtained from the surgery is not algebraic.

Proof. By corollary 3.6, we need to rule out that N has a finite cover homeomorphic to a Seifert-fibered
manifold or a torus bundle over a circle. That (a cover of) N does not magically become a torus bundle
over a circle is rather intuitive. Indeed, ruling out this case by finding a free non-abelian subgroup of its
fundamental group (see lemma 3.9) is rather straightforward. The more difficult part is to show that the
surgery breaks the circle bundle structure.
We want to study the fundamental group of the new manifold N in order to apply corollary 3.11. Since
the projected knot is separating, it divides the surface into two components Σ1 and Σ2. Each Σi is
a punctured surface and, hence, the fundamental group of Σi is some free non-abelian group Fi. Let
M1 and M2 denote the unit tangent bundle of each component. Inspecting the long exact sequence in
homotopy (neglecting base-points) yields

· · · → π2(Σ)→ π1(S1)→ π1(Mi)→ π1(Σi)→ π0(S1)→ · · · .

The group π2(Σ) is zero because the long exact sequence for the universal cover H→ Σ is

· · · → πn(H)→ πn(Σ)→ πn−1(Fdis)→ · · · ,

where Fdis is the corresponding discrete fiber, and the groups πn(H) and πn−1(Fdis) are both zero for
n ≥ 2. Thus, the first sequence reads

0→ Z ↪→ π1(Mi)→ Fi → 0.

Since we are dealing with the unit tangent bundle of an oriented surface, given a loop in Σi, we can
parametrize the fibers along the entire loop. In other words, we can parametrize the restriction of Mi

to the loop by two S1-coordinates, one for the loop and one for the fibers. This shows that the above
short exact sequence splits at the first two stages and, consequently, π1(Mi) ∼= Fi⊕Z. Let M0 denote the
common boundary of M1 and M2. By taking each Mi to be just a slightly larger open set, van Kampen’s
theorem implies π1(M) ∼= π1(M1) ∗π1(M0) π1(M2). What does this product with amalgamation look like?
Let r denote the generator of the Z-component in π1(M1) and likewise r′ for π1(M2). M0 is a torus with
one component corresponding to the separating knot and one to the fibers. The generator of the second
one simply gets mapped to r in π1(M1). On the other hand, by construction of the surgery, its image
in π1(M2) is sr′, where s denotes the word in F2 that corresponds to the image of the knot under the
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restricted shear map D|{s0}×(−ε,ε). Put differently, s corresponds to the word that represents the curve
winding q times around the puncture in Σ2. Thus, as elements of π1(M) we have r = sr′. Let w0 denote
the word in F1 that represents ∂Σ1, i.e. the projection of the knot along which we performed surgery.
There is a corresponding word w′0 in F2 for ∂Σ2. The generator of the knot component in π1(M0) gets
mapped to w0 in F1 and to w′0 in F2. Thus, we see that

π1(M) ∼= ((F1 ⊕ Z) ∗ (F2 ⊕ Z)) /〈r = sr′, w0 = w′0〉.

In particular, π1(M) is still large enough in the sense that it contains a free non-abelian subgroup. It
remains to show that any finite index subgroup H < π1(M) cannot contain an infinite cyclic normal
subgroup. Suppose for contradiction there was such 〈g〉 < H. A priori, g is some word of the form

h1h
′
1 . . . hnh

′
n with hj = ωjr

ij ∈ F1 ⊕ Z and h′j = ω′j(r
′)i
′
j ∈ F2 ⊕ Z. However, we can rewrite any

expression of the form rω′ as sr′ω′ = sω′r′ = sω′s−1r. Note that sω′s−1 is again a word in F2 so that
any combination of the form ωrkω′(r′)m is the same as ωω̃′rk(r′)m for some new word ω̃′ in F2. Moreover,
rr′ is the same as rs−1r, which can again be converted to a word s̃r2 for some word s̃ in F2. Hence,
this shows that ωrkω′(r′)m is equivalent to a word of the form ωω̃′rk+m. In particular, we can convert
g into an element wrk, where w is a word of generators in F1 and F2 only. Since 〈g〉 is assumed to be
normal, for any h ∈ H there is some integer ph such that hgh−1 = gph . Then also gph1h2 = gph1 gph2 ,
i.e. ph1h2

= ph1
ph2

for any h1, h2 ∈ H. In particular, any ph can only be +1 or −1. After passing to
the subgroup {h ∈ H | ph = 1} of H, we still work in a finite index subgroup of π1(M). Therefore, we
may assume that ph is always 1. By lemma 3.8, F1 ∩H contains a free non-abelian group FH . Since F1

and r commute, we have for any h ∈ FH the equalities whrk = wrkh = gh = hg = hwrk. In particular,
wh = hw for all h ∈ FH . Since w is a word of generators in F1 and F2, this can only hold if w = id or if h
is a power of w. However, since FH is free non-abelian, it cannot only contain powers of w. We conclude
that w = id and so g = rk. The entire above argument is symmetric in i = 1, 2, so we also obtain an
integer m with g = (r′)m. But the equality (r′)m = g = rk = (sr′)k = sk(r′)k can only be true if s is the
identity. This, in turn, implies that the surgery was topologically trivial, but it was a Dehn surgery with
coefficient q 6= 0. This leads to a contradiction, proving that there is no finite index subgroup in π1(M)
that contains an infinite cyclic normal subgroup.

Remark 3.13. We did not just prove that the new flow is not algebraic, but also that it is not orbit
equivalent to an algebraic flow. For convenience, let us include this in the definition and from now on say
that a flow is algebraic if it is orbit equivalent to an algebraic flow in the previous sense. The conclusion
of the theorem still holds with this new definition.

3.3 Surgery for Stable Hamiltonian Structures

We have seen how to conduct Dehn surgery preserving the Anosov property of a given flow and even
giving rise to non-algebraic flows. In this chapter, we want to specialize the surgery so that it preserves
more geometric structure of the manifold. More precisely, we are interested in Hamiltonian structures.
Suppose φt is a Reeb flow of an Anosov Hamiltonian structure (M,Ω). Let a surgery domain Λ for Anosov
Dehn surgery parametrized by r ∈ (−η, η), S ∈ S1, and ν ∈ (−ε′, ε′) be given. Since F = ∂

∂r spans the
kernel of Ω, there is a smooth non-vanishing function g on Λ with Ω = gdν ∧ dS in Λ. The function
g does not depend on r because Ω is closed. Introduce w(S, ν) =

∫ ν
0
g(S, ν′)dν′. Then w(S, 0) ≡ 0

and ∂
∂νw = g, which never vanishes, so (r, S, ν) 7→ (r, S, w(S, ν)) = (r, s, w) is a well-defined coordinate

transformation. If we denote the interval parametrizing w by (−ε, ε), then the notation matches up with
the previous one. The vector field generated by the w-coordinate is 1

∂νw
∂
∂ν , which is still E-transverse. In

the new coordinate system, the vector field generated by the s-coordinate becomes ∂
∂S −

∂Sw
∂νw

∂
∂ν . Thus, at

coordinates with ν = 0 we have ∂
∂s = ∂

∂S and by shrinking ε we can ensure that ∂
∂s stays E-transverse. In
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conclusion, up to shrinking the width, we have the same surgery domain as before and it is still suitable
for Anosov Dehn surgery. In the new coordinate system, Ω = dw ∧ ds. Since

(id×D)∗(dw ∧ ds) = dw ∧ d(s+ T (w)) = dw ∧ ds,

the form Ω is preserved by the surgery. Therefore, after conducting the Anosov Dehn surgery, we get a
new Hamiltonian structure (N,Ω). This Hamiltonian structure is Anosov because the new flow ψt is one
of its Reeb flows. In other words:

Proposition 3.14. Up to shrinking and reparametrizing the surgery annulus, Anosov Dehn surgery
preserves Anosov Hamiltonian structures.

We presented a surgery adapted to a Hamiltonian structure. A potential issue that comes to mind is
that we fixed an arbitrary Reeb flow but the surgery should in some sense be independent of the choice of
Reeb flow so that it really is subject to the Hamiltonian structure only. When we proved in proposition 1.1
that the Anosov property persists under time-changes, the proof revealed that the (un)stable subbundle
only differs in a contribution in the flow direction. In particular, if a vector field is E-transverse for a
given Anosov flow, then it is also E-transverse for any time-change of that flow. Suppose φ′t is another
Reeb flow. By the preceding argument, the annulus remains suitable for Anosov Dehn surgery on φ′t.
However, the r-coordinate can cause trouble. The infinitesimal generator of φ′t in the above coordinates
is R(r, s, w) ∂∂r for some smooth function R that may depend on all coordinates. In particular, this vector
field is not preserved by the surgery if it has a non-trivial s-dependence. As observed in the appendix,
we notice that doing surgery in a φ′t-flow box around A we do not even end up with the same manifold
N . Fortunately, the proceeding discussion in the appendix makes sure the surgery is independent of the
choice of Reeb flow up to smooth conjugacies:

Lemma 3.15. A flow ψ′t coming from φ′t-surgery, where φ′t is a time-change of φt, is smoothly conjugate
to a time-change of ψt. Conversely, for any time-change ψ′t of ψt, there is a time-change φ′t of φt so that
ψ′t is smoothly conjugate to a constant time-change of the flow coming from φ′t-surgery.

Proof. As noted in the appendix, doing φ′t-surgery gives rise to a different manifold N ′, but any diffeo-
morphism hloc of the respective flow boxes with a restriction only at the boundary gives rise to a global
diffeomorphism N → N ′ that carries the infinitesimal generator of ψt to a multiple of the infinitesimal
generator of ψ′t. On the other hand, given a time-change ψ′t of ψt, we can take a time-change φ′t of
φt so that the infinitesimal generators of ψ′t and φ′t agree on N \ Λ = M \ Λ. As before, we perform
φ′t-surgery to obtain N ′ and take a local diffeomorphism of the flow boxes (this time from Λ′ to Λ). As
discussed in the appendix, if the diffeomorphism is of the form hloc(r′, s, w) = (h1(r′, s, w), s, w), then
the global diffeomorphism N ′ → N maps ∂

∂r′ to
(
∂
∂r′h1

)
∂
∂r . The infinitesimal generators already agree

at the boundary of Λ′ and since we have no restriction on h1 in the interior, we can take it so that it
maps ∂

∂r′ to the infinitesimal generator of ψ′t. Strictly speaking, we cannot take h1 arbitrarily inside Λ′

since it still needs to be a well-defined function taking values in Λ. However, since we are free to take φ′t
as we want inside Λ′ and may replace it by a constant time-change, we may take it so that the needed
h1 can be realized.

Next, we would like to preserve more than the just the Hamiltonian structure, namely stability. By
theorem 1.36, this reduces to studying the HS-contact and the suspension cases. We begin with the
former.

Example: Foulon and Hasselblatt

In this section, we discuss the surgery designed by Foulon and Hasselblatt. They were concerned with
adapting the surgery so that it preserves the contact property of a flow. Suppose φt is the Reeb flow of a
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contact form λ on M and, further, that the (un)stable subbundle is orientable. Surgery domains suitable
for this type are given by those whose E-transverse knot5 is Legendrian, which means that its derivative
lies in the contact structure, and for which the vector field ∂

∂ν is contained in Es⊕Eu at coordinates r = 0.
Remark 3.1 shows that such surgery domains always exist once we have an E-transverse Legendrian knot.
Given such a surgery domain, we can adapt it to the Anosov Hamiltonian structure dλ as above.

Lemma 3.16. After adapting the surgery domain to the Anosov Hamiltonian structure dλ,

λ = dr + wds, dλ = dw ∧ ds, λ ∧ dλ = dr ∧ dw ∧ ds.

Proof. Consider (r, S, ν)-coordinates constructed as described in remark 3.1 before we reparametrize the
surgery domain to adapt it to the Anosov Hamiltonian structure dλ. In these coordinates, we obtain
some local expression

λ = f0(r, S, ν)dr + f1(r, S, ν)dS + f2(r, S, ν)dν.

Since F = ∂
∂r and λ(F ) ≡ 1, we must have f0 ≡ 1. The vector field ∂

∂ν lies in Es ⊕ Eu at coordinates
r = 0 by assumption, which implies f2(0, S, ν) ≡ 0. Since F is the Reeb vector field of λ, it holds
that ιF dλ = 0. This translates to f1 and f2 being independent of r. Therefore, f2 ≡ 0 and λ takes the
expression dr+f1(S, ν)dS. In particular, dλ = (∂νf1)dν∧ds. Adapting the surgery domain to the Anosov
Hamiltonian structure dλ is, hence, done by w(S, ν) = f1(S, ν) − f1(S, 0). But f1(S, 0) = λ

(
∂
∂S

)
|(0,S,0)

is zero because the knot for the surgery is Legendrian and ∂
∂S |(0,S,0) is exactly its derivative. Thus,

λ = dr + wds in the adapted coordinates.

We compute

(id×D)∗λ = dr + wd(s+ T (w)) = λ+ wT ′(w)dw

to find that the contact form gets broken by the surgery. However, we can also observe that the volume
form λ ∧ dλ is clearly preserved by the surgery, so the new flow ψt is always volume preserving when we
start with a contact flow. Indeed, this follows readily from Cartan’s formula. Still, we hope to recover
the contact property. The form λ may get broken but we know how it breaks. The idea now is as follows:
we perturb λ on one side of the surgery domain {r < 0} to λ− and on the other side {r > 0} to λ+. The
resulting object no longer defines a 1-form on M due to the discontinuity at r = 0, but if we manage
to ensure (id × D)∗λ− = λ+, then this object will glue to define a 1-form after the surgery. Since the
Hamiltonian structure dλ is preserved by the surgery, we want to perturb λ so that the resulting form
on the new manifold still is a primitive of dλ. For instance, this can be achieved by perturbing λ by an
exact form on each side. Introduce the correction function

c(r, w) =
1

2
ρ(r)

∫ w

−ε
xT ′(x)dx,

where ρ : R→ R is a smooth bump function that is 1 close to the origin and whose support is contained
in (−η, η). We pose two requirements on the twist map T : firstly, its derivative T ′ should be symmetric
about the origin; secondly, T ′ should smoothly tend to 0 as w → ±ε. Then c(r, w) → 0 smoothly as
r → ±η or as w → ±ε. Hence, we can extend c by zero to a smooth function defined on the entire
manifold M . Close to r = 0, where ρ is constantly 1, we have dc = 1

2wT
′(w)dw, i.e. the term by which

the contact form gets broken under the surgery, up to a factor 1
2 . Since c has no s-dependence, it is

preserved by the surgery, as is dc. If we take λ± dc as our perturbations λ±, then indeed

(id×D)∗(λ−) = λ+ wT ′(w)− dc = λ+.

5It is noteworthy that any knot is isotopic to a Legendrian knot, though not necessarily to an E-transverse one ([Gei08,
p. 101]).

53



3.3 Surgery for Stable Hamiltonian Structures

Moreover, as noted above, the new 1-form on the new manifold N is a primitive of dw ∧ ds = dλ. What
is not clear is that the new form is a contact form. For this to be true, we need that

(λ± dc) ∧ d(λ± dc) = λ ∧ dλ±
(
∂

∂r
c

)
dr ∧ dλ =

(
1± ∂

∂r
c

)
dr ∧ dw ∧ ds

never vanishes. Let us show that this can be achieved with a particular choice of twist map and by
shrinking the width of the surgery annulus.

Lemma 3.17. When choosing ε, T , and ρ suitably, ∂
∂r c has absolute value strictly less than 1.

Proof. Let |ρ′|∞ and |T ′|∞ denote uniform upper bounds for the derivatives of ρ and T , respectively.
Then ∣∣∣∣ ∂∂r c

∣∣∣∣ =

∣∣∣∣12ρ′(r)
∫ w

−ε
xT ′(x)dx

∣∣∣∣ ≤ |ρ′|∞|T ′|∞ ∫ ε

0

xdx =
1

2
ε2|ρ′|∞|T ′|∞.

Clearly, if ε is small enough, then this expression is smaller than 1. Though, we do need to pay attention
to the choices of ρ and T because ε is the first variable that we fixed and needs to be picked independently
of later choices. The bump function can be taken so that the bound |ρ′|∞ depends only on η and is,
say, smaller than 2/η. We construct T as follows. Take a smooth function t : R → [0, 2π] which is 0 on
{x ≤ −1} and is 2π on {x ≥ 1}. The uniform bound |t′|∞ of t′ is independent of any other choice. We
may take it to be smaller than 4. Moreover, pick t so that t′ is symmetric around the origin. Set, for
instance, T (w) = exp(−iqt(wε )), where q is the surgery coefficient. Then T satisfies the requirement of
having symmetric derivative about the origin and that T (w) → 0 and T ′(w) → 0 smoothly as w → ±ε.
Moreover, |T ′| is uniformly bounded by q

ε |t
′|∞. Thus,∣∣∣∣ ∂∂r c
∣∣∣∣ ≤ 1

2
ε2|ρ′|∞|T ′|∞ ≤

4q

η
ε.

We see that, in the beginning of the surgery process, we could have first fixed a small η, and then shrunken
ε to be smaller than η

4q . After these choices have been made, we can pick ρ and T as above so that ∂
∂r c

has absolute value strictly less than 1.

We finished constructing a contact form on the new manifold that agrees with the old contact form
outside the surgery domain and is a primitive of dλ. Note that ∂

∂r c is zero at r = 0, at r = ±η, and at
w = ±ε. Thus, the vector field R defined by being F outside the surgery domain and being 1

1± ∂
∂r c

F in

each side of the surgery domain is a well-defined vector field on the new manifold N . Since (λ±dc)(R) ≡ 1
and ιRdλ = 0, R is the Reeb vector field of the new contact form. In other words, the flow ψt obtained
from the surgery is a time-change of the contact flow induced by R. Even more so, we notice that this is
a canonical time-change. Therefore, ψt itself is a contact flow by proposition 1.28. We have verified:

Proposition 3.18. For a specific choice of surgery annulus (namely, one with Legendrian knot and
with ∂

∂w ∈ E
s ⊕ Eu at r = 0) and choice of twist map, Anosov Dehn surgery preserves Anosov stable

Hamiltonian structures of HS-contact type.

Example: Handel and Thurston Extended

Geodesic flows on unit tangent bundles are of contact type. Let us review the example of Handel and
Thurston in light of the adaption proposed by Foulon and Hasselblatt. Recall that the surgery chart is
given by

Λ→ UΣ, (r, s, w) 7→
(

expc(s)

(
rl0e

i(ν(w)+π/2)ċ(s)
)
,
∂

∂r
expc(s)

(
rl0e

i(ν(w)+π/2)ċ(s)
))

,
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where c is a simple closed geodesic and w = 1
l0

cos(ν + π/2). The contact form whose Reeb flow is the
geodesic flow is the canonical 1-form (λ0)(x,u)(X) = 〈u,XH〉. In particular, the surgery knot γ(s) =
(c(s), l0Jċ(s)) is Legendrian because

(λ0)γ(s)(γ̇(s)) = l0〈Jċ(s), ċ(s)〉 = 0.

Moreover, the vector field ∂
∂ν at r = 0 is given by (0,−l0eiν ċ), which lies in Es⊕Eu by theorem 2.6. We

only need to verify that w = 1
l0

cos(ν + π/2) is the coordinate transformation obtained from adapting
the surgery annulus to the Anosov Hamiltonian structure dλ0. Then lemma 3.16 implies that in (r, s, w)-
coordinates we have λ0 = dr+wds. Since c is a geodesic and, hence, ∇sċ ≡ 0, the vector field ∂

∂S (where
S is the knot coordinate before the change of coordinates) at r = 0 is given by (ċ(S), 0). The proof of
lemma 3.16 revealed that the transformation is given by

w(S, ν) = λ0

(
∂

∂S

) ∣∣∣
(0,S,ν)

= l0〈ei(ν+π/2)ċ(S), ċ(S)〉 = l0|ċ|2 cos(ν + π/2) = w.

Thus, the adapted surgery is applicable and yields a contact flow on the new manifold. In addition, if
we started with a separating geodesic, then the new flow is not algebraic by theorem 3.12. This is how
Foulon and Hasselblatt concluded:

Theorem 3.19. There exist non-algebraic contact Anosov flows in dimension three.

Remark 3.20. This is remarkable because a contact Anosov flow with smooth Anosov splitting is an
algebraic flow ([BFL92, Thrm. 1]). Hence, the above theorem says something about the strength of the
hypothesis of having a smooth splitting.

Example: Suspensions

In this section, we investigate the second class of Anosov stable Hamiltonian structures given by suspen-
sions. We discussed in proposition 1.35 when these examples arise. Let an Anosov stable Hamiltonian
structure (M,Ω) admitting a closed stabilizing 1-form be given and denote by λ the stabilizing 1-form
obtained by pulling back the canonical volume form on S1 as in proposition 1.35. As an analogue to the
contact surgery, we replace the use of Legendrian knots by ones that live in a single fiber. Similarly, we
again assume that the vector field ∂

∂ν is contained in Es ⊕Eu at r = 0. As before, we adapt the surgery
annulus to the Anosov Hamiltonian structure Ω.

Lemma 3.21. In the surgery domain, dλ = dr.

Proof. Since λ is φt-invariant, we must have ker(λ) = Es⊕Eu. As before, Es⊕Eu is always the tangent
bundle of the fibers of the suspension structure. Therefore,

λ
( ∂
∂s

)∣∣∣
(0,s,0)

≡ 0 and λ
( ∂

∂w

)∣∣∣
(0,s,w)

≡ 0

by assumption. Suppose λ has local expression dr + f1(r, s, w)ds + f2(r, s, w)dw. That dλ is closed is
equivalent to f1 and f2 not depending on r as well as having ∂

∂wf1 = ∂
∂sf2. Thus, f2 ≡ 0, which implies

that f1 depends only on s, which in turn implies f1 ≡ 0.

In particular, λ is preserved by Anosov Dehn surgery in such a surgery domain. It follows that the
surgery not only preserves stability of the Anosov Hamiltonian structure (M,Ω) but also a stabilizing 1-
form. This is in contrast to the contact case, where the contact property was only qualitatively preserved
but realized by a newly constructed form (even the underlying contact structure changed). Moreover,
this time we have no need for any additional requirements on the twist map.
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Proposition 3.22. For a specific choice of surgery annulus (namely, one with the knot being contained in
a single fiber and with ∂

∂w ∈ E
s⊕Eu at r = 0), Anosov Dehn surgery preserves Anosov stable Hamiltonian

structures of suspension type including the preservation of a stabilizing 1-form.

Having specialized the surgery in both the HS-contact and the suspension cases, we conclude with
theorem 1.36:

Theorem 3.23. For a specific choice of surgery annulus and twist map, Anosov Dehn surgery preserves
Anosov stable Hamiltonian structures.

3.4 Surgery for Virtually Contact Structures

By remark 3.13, we can call a Hamiltonian structure algebraic if some (any) of its Reeb flows are algebraic.
As a consequence of the Foulon-Hasselblatt surgery, we found non-algebraic HS-contact Anosov Hamil-
tonian structures in dimension three. A natural extension of this question is: are there non-algebraic
virtually contact (but not HS-contact) Anosov Hamiltonian structures in dimension three, as well? In
this chapter, we mean to answer this question in the positive by adapting the previous surgery idea and
applying it to magnetic flows.
First, let us briefly outline the idea of the adaption. Let (M,Ω) be a virtually contact Anosov Hamil-
tonian structure with a Reeb flow φt. Recall that this involves the existence of a cover M̂ → M and a
primitive λ of the lift Ω̂ with ||λ||∞ <∞ and infx∈M̂ |λ(F̂ (x))| > 0 in some (any) lifted metric. We refer
to such λ as a virtual contact form. We discussed how to adapt Anosov Dehn surgery to preserve Anosov
Hamiltonian structures. To show that the new Hamiltonian structure is virtually contact we need to find
a suitable contact form in a cover of the new manifold N . However, if we perform the surgery on M
without any additional attention, then afterwards we do not really know what a cover of N may look
like. Without knowing what a cover looks like, it is even less feasible to construct an appropriate virtual
contact form. If we can perform an analogous surgery in a cover M̂ of the original manifold, then we
get a new manifold N̂ from M̂ , which will cover N . This way, we can keep track of what happens to
the virtual contact form we started with and, as in the Foulon-Hasselblatt surgery, rebuild a new contact
form on N̂ . By doing all these steps with proper care, this new contact form will be a virtual contact
form for the new Hamiltonian structure on N .
This concept requires the existence of virtually contact Anosov Hamiltonian structures that are not HS-
contact to begin with. The existence of such is asserted by various examples of magnetic flows, namely
magnetic flows coming from a metric of non-constant curvature, see corollary 2.44. In order to achieve
the “proper care” mentioned above, we will work with a very specific class of these flows for which we
can do some computations explicitly. For an arbitrary virtually contact Anosov Hamiltonian structure,
we have, in general, insufficient information to carry out several steps performed below. The flow we will
work with is a magnetic flow that is only a slight perturbation of a geodesic flow, which is achieved by
considering a large energy level. Moreover, to perform explicit calculations, we will make a very slight
perturbation of a constant curvature metric so that the Anosov splitting of the flow resembles the one
described in theorem 2.9.

Preparing the Surgery Chart “Downstairs”

Let (Σ, g) be an oriented closed surface of strictly negative but non-constant curvature. Recall the
twisted symplectic form Ω = ω0 + π∗Ωarea on the energy level Sk, where π : Sk → Σ, and let φt be
the corresponding magnetic flow. As mentioned above, corollary 2.44 provides us with a suitable class
of Hamiltonian structures: for any large energy level, (Sk,Ω) is Anosov and virtually contact, but not
HS-contact. We need a knot along which we can perform surgery. In the spirit of wanting to do a surgery
similar to Handel and Thurston’s, let c be a either closed geodesic or a closed magnetic geodesic on Σ
of energy k and consider the vector field Jċ along c. Since the curvature will be taken to be “almost
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constant”, a geodesic and a magnetic geodesic differ only slightly. The existence of a closed magnetic
geodesic in an arbitrary homotopy class for any energy level k > cu is always given (see, for instance,
[Mer10, Thrm. 1.1]). The latter condition is automatically satisfied by proposition 2.43.

Lemma 3.24. If the curvature is “almost constant” (in the sense that the difference between the minimal
and maximal curvature is small), then γ = (c, Jċ) is an E-transverse knot for φt.

Proof. We observe that using the cone criterion to verify structural stability of Anosov flows simulta-
neously asserts that the Anosov splitting gets perturbed only little when we slightly perturb a given
Anosov flow. Hence, if the curvature is “almost constant”, then the Anosov splitting of our magnetic
flow resembles the one established in theorem 2.9. Let g0 denote the Riemannian metric on Σ whose
curvature is constantly K0, where K0 < 0 is the constant for which maxx∈Σ |K(x)−K0| is small. Denote
by J0 the canonical almost complex structure of g0. Let c0 denote the closed curve in the homotopy class
of c that is a geodesic or a magnetic geodesic with respect to g0. Take k > − 1

2K0
as required in theorem

2.9. For the Anosov splitting given in said theorem, we have: (c0, J0ċ0) is E-transverse for the magnetic
flow coming from g0 if k 6= − 1

K0
(proved below). In particular, if we take a large energy level and take

our original curvature such that (c, Jċ) is only a slight perturbation of (c0, J0ċ0), then the lemma follows.
Asserting the condition for γ0 = (c0, J0ċ0) to be E-transverse is a simple system of linear equations. Let
(x, v) denote the point (c0(s), J0ċ0(s)). Then γ̇0(s) = (−J0v, 0) or γ̇0(s) = (−J0v, J0v) depending on
whether c0 is a geodesic or a magnetic geodesic. Let γ1

0 denote the former case and γ2
0 the latter so that

γ̇i0 = (−J0v, δi2J0v). By theorem 2.9, there are real numbers ai, bi, di such that at (x, v) we have

γ̇i0 = ai

(√
−(2kK0 + 1)H − V1,k

)
+ bi

(√
−(2kK0 + 1)H + V1,k

)
+ diF

⇐⇒

−J0v = ai

(√
−(2kK0 + 1)J0v − v

)
+ bi

(√
−(2kK0 + 1)J0v + v

)
+ div,

δi2J0v = ai2kK0J0v − bi2kK0J0v + diJ0v

⇐⇒
0 = −ai + bi + di,

−1 =
√
−(2kK0 + 1)ai +

√
−(2kK0 + 1)bi,

δi2 = 2kK0ai − 2kK0bi + di.

The knot γi0 is not E-transverse for the magnetic flow coming from g0 only if the above system has a
solution with either ai = 0 or bi = 0. Solving this system shows that ai = 0 does not admit a solution
for both i = 1, 2 whereas bi = 0 only admits a solution if i = 2 and k = − 1

K0
.

Now that we have an E-transverse knot, we can construct a parametrized neighborhood as for the
Anosov Dehn surgery. As with the chart for Handel and Thurston’s surgery, we use the vertical vector
field V (x, v) = (0, Jv) as our local E-transverse vector field. E-transversality is ensured by theorem 2.10.
Thus, we obtain a 2-dimensional neighborhood of γ parametrized by (s, ν) = ρν(γ(s)) = (c(s), eiνJċ(s)),
where ρt(x, v) = (x, eitv) denotes the flow of V . As before, we can again apply the flow map for small
times to get a 3-dimensional neighborhood parametrized by (r, s, ν)-coordinates on (−η, η)×S1×(−ε′, ε′)
such that ∂

∂r is the infinitesimal generator of the flow. To preserve the Hamiltonian structure Ω, we need
to adapt the coordinates as discussed in the previous section.

Lemma 3.25. Adapting the coordinates to the Hamiltonian structure Ω is done by w(ν) = −2k cos(ν+ π
2 ).

Proof. Write Ω as gdν ∧ ds in the chart for some smooth function g, which does not depend on the
r-coordinate because Ω is closed. Note that at r = 0 the vector fields ∂

∂S and ∂
∂ν are given by (ċ(S), ?)

and (0,−eiν ċ(S)), respectively, where S denotes the knot coordinate before the change of coordinates
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and ? denotes either 0 or −eiν ċ(S) depending on whether c is a geodesic or a magnetic geodesic. Thus,
we obtain

g(S, ν) = Ω

(
∂

∂ν
,
∂

∂S

) ∣∣∣
(0,S,ν)

= −〈−eiν ċ(S), ċ(S)〉 = |ċ|2 cos(ν) = 2k cos(ν).

The transformation becomes w(S, ν) =
∫ ν

0
g(S, ν′)dν′ = 2k sin(ν).

Denote the domain of the w-coordinate by (−ε, ε) and the domain of the triple (r, s, w) by Λ. In
summary,

Λ ↪→ Sk, (r, s, w) 7→ φr
(
c(s), ei(ν(w)+π

2 )ċ(s)
)
.

We will switch freely between regarding Λ as a parameter space or a subset of Sk and hope this causes
no confusion. Having set up a suitable parametrized neighborhood “downstairs”, we turn our attention
to a cover “upstairs”, where the contact part of the surgery will take place.

Preparing the Surgery Chart “Upstairs”

Let Σ̃ denote the universal cover of Σ with covering map Π. Then S̃k ⊂ T Σ̃ is a cover of Sk and we
denote its covering map by Π̃k. Since k > cu, the cover S̃k admits a virtual contact form for (Sk,Ω).
However, we would actually like to work in a smaller cover for reasons that become clear later. But first,
let us exploit the information we have for S̃k. Fix any lifted metric on S̃k. There exists a 1-form Θ on
Σ̃ that is bounded by 1

2 ||Θ||
2
∞ < k and is a primitive of Π∗Ωarea. In fact, we can pick the primitive Θ

more carefully. There is a deck transformation T of the cover Σ̃ → Σ associated to the homotopy class
[c]. Let Γ denote the infinite cyclic subgroup of π1(Σ, ?) generated by T . Then we may assume that Θ is
Γ-invariant by proposition 2.35. To shorten notation, we abbreviate Θ̃ = π̃∗Θ, λ̃0 = Π̃∗kλ0 and Ω̃ = Π̃∗kΩ

so that all forms with a tilde on top live on S̃k. Let λ̃ denote the 1-form on S̃k given by −λ̃0 + Θ̃. Then
λ̃ is a virtual contact form for (Sk,Ω) because it is a primitive of Ω̃, it is bounded, and it satisfies

ιF̃ λ̃ = −λ̃0(F̃ ) + Θ̃(F̃ ) ≤ −2k +
√

2k||Θ||∞ < 0.

As mentioned above, we want to pass to a smaller cover. Consider the map T Σ̃→ T Σ̃ that sends (x, v)
to (T (x), (dT )x(v)). Since T is an element of PSL(2,C), it has determinant 1 so that this map restricts
to a map t : S̃k → S̃k. Since Π ◦ T = Π, t clearly is a deck transformation of the cover Π̃k : S̃k → Sk.
Denote by Γ̃ the subgroup of deck transformations generated by t. Let Ŝk denote the quotient space
S̃k/Γ̃. Since deck transformations act properly discontinuously, Ŝk is a smooth manifold and, moreover,
it is a cover of Sk. Denote its covering map by Π̂k : Ŝk → Sk. This will be the cover we want to work in
for the surgery. Since F̃ and λ̃0 are lifts of objects defined on Sk, they factor through Γ̃. Having picked
Θ T -invariant, its lift also factors through because

t∗Θ̃ = (π̃ ◦ t)∗Θ = (T ◦ π̃)∗Θ = π̃∗Θ = Θ̃.

Thus, F̃ , λ̃0, Ω̃, Θ̃, and λ̃ descend to define F̂ , λ̂0, Ω̂, Θ̂, and λ̂ on Ŝk, respectively. Next, we construct
the surgery chart “upstairs”. Fix a lift p̂0 ∈ Ŝk of the point p0 ∈ Sk given by the (0, 0, 0)-coordinate
in Λ. By the lifting property of a cover, the map (−η, η) × R × (−ε, ε) → Sk, which is given by the
(r, s, w)-coordinate but the s-coordinate read modulo 2π, has a unique lift to a map into Ŝk mapping
the origin to p̂0. Denote the lifted coordinates by (r, s, w), as well, and let Λ̂ denote the domain of
the lifted coordinates (which must be either (−η, η) × R × (−ε, ε) or (−η, η) × S1 × (−ε, ε)). The map
Λ̂→ Ŝk, s 7→ (0, s, 0) is a concatenation of lifts of the knot γ and will be denoted by γ̂.

Lemma 3.26. The projection of γ̂ onto γ is injective. Hence, Λ̂ = (−η, η) × S1 × (−ε, ε) = Λ (as
parameter spaces) and the projection of the lifted coordinates is a diffeomorphism.
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Proof. Similarly as above, we can lift the (r, s, w)-coordinates to (R,S,W )-coordinates on S̃k parametrized
by the domain (−η, η)×R×(−ε, ε). Let γ̃ denote the concatenation of lifts of γ given by S 7→ (0, S, 0) and
let c̃ denote the concatenation of lifts of c given by π̃ ◦ γ̃. Since T is the deck transformation associated
to the homotopy class of c, we find T (c̃(S)) = c̃(S + 2π) and (dT )c̃(S)( ˙̃c(S)) = ˙̃c(S + 2π). Thus, we find
in (R,S,W )-coordinates

t(0, S, 0) = t(γ̃(S)) = γ̃(S + 2π) = (0, S + 2π, 0).

As the (R,S,W )-coordinates arose as lifts and t is a deck transformation, this implies t(R,S,W ) =
(R,S + 2π,W ). Thus, taking the quotient by Γ̃ means that we actually regard the S-coordinate modulo
2π again. The conclusion follows.

Since Λ̂ = Λ, we will later be able to apply the same gluing map “upstairs” and “downstairs” such
that the new object upstairs covers the new object downstairs. This is why we passed from the cover S̃k
to the smaller one Ŝk. For the former, the lifted chart is of the form (−η, η) × R × (−ε, ε) and twisting
the s-coordinate by 2πq would not give rise to a new manifold. On the other hand, Ŝk is, in some sense,
the smallest cover for which the lifted chart is of the form (−η, η) × S1 × (−ε, ε). However, in order for
the entire new manifold N̂ coming from Ŝk to cover N coming from Sk, we need to perform the surgery
“upstairs” in every possible lift of Λ, not just the one we specified above by fixing p̂0. Fortunately, we
can make sure this is possible.

Lemma 3.27. Let p̂1 denote another lift of p0. By lifting the coordinates to Ŝk so that the origin
corresponds to p̂1 instead of p̂0, we get a new chart in Ŝk denoted Λ̂1. Then, up to shrinking ε and η
if necessary, Λ̂ and Λ̂1 (as subsets of Ŝk) do not intersect. Moreover, the size of ε and η can be taken
independently of p̂0 and p̂1.

Proof. This only relies on the properties of a covering space. By definition, every point p in Sk has a
neighborhood Up such that Π̂−1

k (Up) is a disjoint union of sets diffeomorphic to Up. Now take finitely
many points p1, . . . , pN on γ such that Up1 , . . . , UpN cover γ. Shrink ε and η so much that Λ is contained
in the union Up1 ∪ · · · ∪ UpN . Let U denote the collection of the following sets V : V is a lift of Upj
(for some 1 ≤ j ≤ N) obtained by lifting pj to a point lying on γ̂. Define γ̂1 and U1 analogously. Now

suppose for contradiction that Λ̂ and Λ̂1 intersect in a point q. Then there is some V in U containing q.
V projects to some Upj . One of the lifts of Upj in U1 must contain q, as well. But then we found two
different preimages of Upj that are not disjoint, contradicting the covering property.

By the lemma, we find a collection of disjoint lifts of Λ. This collection is countable because π1(Sk, ?)
is countable and lifts of p0 correspond to elements in π1(Sk, ?). Denote this collection by {Λ̂n}n≥0. As
they are disjoint, we can carry out the surgery in each lift simultaneously so that the resulting manifold
N̂ will cover N . However, before we get to the actual surgery, we first need to study the contact form λ̂
in these lifted charts to prepare the contact part of the surgery.

Preparing the Contact Form “Upstairs”

Remark 3.28. Recall from the Foulon-Hasselblatt surgery that the contact form λ was deformed to
(id×D)∗λ on one side of the surgery, and that we perturbed it to λ−dc and λ+dc with (id×D)∗(λ−dc) =
λ+dc to counter this shift. This worked because the local expressions of λ and dc contained no coefficient
function g that depended on the s-coordinate. Otherwise, (id × D)∗(λ − dc) would contain a coefficient
function of the form g ◦ (id × D) = g(r, s + T (w), w) and would have no chance of gluing smoothly to
λ+ dc due to the appearance of “+T (w)” in the argument.

Let Λ̂ denote any one of the lifted charts. Suppose λ̂ is written as f0dr+f1ds+f2dw in Λ̂. As mentioned
in the remark, the problem we are facing is that these coefficient functions depend non-trivially on the
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s-coordinate. The idea is to change λ̂ by adding an exact 1-form to get rid of the troublesome terms.
However, we have to do so in a way that preserves the virtual contact property. Let us begin by analyzing
λ̂ in Λ̂. Since ∂

∂r is a time-change of the Reeb vector field of λ̂, we find dλ̂( ∂∂r ) ≡ 0 and, hence,

∂

∂s
f0 =

∂

∂r
f1 and

∂

∂w
f0 =

∂

∂r
f2.

Denote by g0 the map ιF̂ Θ̂ restricted to Λ̂ so that we can write

f0 = ιF̂ λ̂ = −ιF̂ λ̂0 + ιF̂ Θ̂ = −2k + g0.

Define a new function on Λ̂ by A(r, s, w) =
∫ r

0
g0(r′, s, w)dr′. Then the above equations of partial

derivatives yield

∂

∂r
A = g0,

∂

∂s
A = f1 − f1(0, s, w),

∂

∂w
A = f2 − f2(0, s, w).

Recall that the w-coordinate was constructed on integral flow lines of the vertical vector field V through γ
so that (0, s, w) = (c(s), ei(ν(w)+π

2 )ċ(s)). In particular, ∂
∂w has zero horizontal component at coordinates

(0, s, w). Therefore,

f2(0, s, w) =

[
−λ̂0

(
∂

∂w

)
+ Θ̂

(
∂

∂w

)] ∣∣∣∣
(0,s,w)

≡ 0.

Likewise, we can use ∂
∂s

∣∣
(0,s,w)

= (ċ, ?) (where ? is either 0 or −eiν ċ depending on whether c is a geodesic

or a magnetic geodesic) to explicitly compute the function f1 at these coordinates:

f1(0, s, w) = −(λ0)(
c,ei(ν+

π
2

)ċ
)((ċ, ?))+ Θ̃(

c̃,ei(ν+
π
2

) ˙̃c
)(( ˙̃c, ?

)
= −

〈
ei(ν+π

2 )ċ, ċ
〉

+ Θc̃

(
˙̃c
)

= −||ċ||2 cos
(
ν +

π

2

)
+ Θc̃

(
˙̃c
)

= w + Θc̃

(
˙̃c
)
.

Then in Λ̂ we have λ̂− dA = −2kdr +
(
w + Θc̃

(
˙̃c
))
ds. Define another function in Λ̂ by

B(r, s, w) = B(s) =

∫ s

0

Θc̃(s′)

(
˙̃c(s′)

)
ds′.

Then in Λ̂ we get λ̂ − d(A + B) = −2kdr + wds, which looks pretty much like the form in the Foulon-
Hasselblatt surgery (i.e. dr + wds) apart from the factor −2k. Being a constant factor, this does not
bother us, though.

Remark 3.29. The resemblance to the computations in the extended Handel and Thurston example for
the geodesic flow is obvious. They correspond exactly to the case Θ = 0.

The forms dA and dB are only defined in Λ̂, so λ̂−d(A+B) is not well-defined on Ŝk. Let ρ(r, w) be a
bump function that is 0 outside Λ̂ and 1 inside the smaller domain Λ̂sm = (−ηsm, ηsm)×S1× (−εsm, εsm).
For small ηsm, we may pick ρ such that |∂rρ| is bounded by 2/η.

Lemma 3.30. Suppose we started with a high energy level (more precisely, k >
(
3 + 4π

η

)2
cu). Then the

adjusted form λ̂adj = λ̂− d(ρ(A+B)) is a virtual contact form for (Sk,Ω).
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Proof. Certainly dλ̂adj = dλ̂ = Ω̂. Since λ̂ is bounded and since A, B, dA, and dB only contain coefficient

functions of λ̂, the new form remains bounded, as well. We need to verify that |λ̂adj| is bounded from

below on span〈F̂ 〉. Outside Λ̂, this is given as λ̂adj = λ̂. We begin by estimating

|A|∞ ≤ η|g0|∞ ≤ η
√

2k||Θ||∞,

|B|∞ ≤ 2π||Θ||∞|ċ| = 2π
√

2k||Θ||∞.

Inside Λ̂ we have F̂ = ∂
∂r and we further estimate

λ̂adj(F̂ ) = λ̂(F̂ )− ρ∂r(A+B)− (∂rρ)(A+B)

= −2k + g0 − ρg0 − (∂rρ)(A+B)

≤ −2k + |g0|∞ + |∂rρ|∞(|A|∞ + |B|∞)

≤ −2k +
√

2k||Θ||∞ +
2

η

(
η
√

2k||Θ||∞ + 2π
√

2k||Θ||∞
)

= −2k +
√

2k||Θ||∞
(

3 +
4π

η

)
This last term is strictly smaller than 0 if 1

2 ||Θ||
2
∞ < k

(
3 + 4π

η

)−2
, which is ensured when the right hand

side is larger than the universal Mañé critical value.

We performed the previous computation in one fixed lifted domain Λ̂ of Λ. Now consider the collection
{Λ̂n}n≥0 of lifted domains. Let An and Bn denote the corresponding functions for the lift Λ̂n and pick a

bump function ρn for Λ̂n as above. Then the new form λ = λ̂−
∑
n≥0 d

(
ρn(An+Bn)

)
is a virtual contact

form for (Sk,Ω) and inside each smaller domain Λ̂smn it is given by the expression λ = −2kdr + wds.

The Surgery

The actual surgery works precisely as the Foulon-Hasselblatt one. Let T : (−εsm, εsm) → S1 be the
same twist map as before and D(s, w) = (s + T (w), w). Then we perform Anosov Dehn surgery in
Λsm to get a new flow ψt on the new manifold N . We can conduct the same surgery in each lift Λ̂smn
simultaneously. Since we use the same gluing map, the resulting manifold N̂ will be a cover of N and
the new flow “upstairs” covers the new flow “downstairs”. In every lifted domain Λ̂smn we can define
the same correction function cn(r, w) as for the Foulon-Hasselblatt surgery and perturb λ to λ − dcn
and to λ + dcn on each side of the surgery, respectively. Since each cn vanishes outside Λ̂smn , we can do
this simultaneously in every domain, as well. This way, we get a contact form λnew on N̂ . Since λ is
a virtual contact form for (Sk,Ω), there is a non-zero function R on Ŝk bounded from above and below
such that the time-change RF̂ is the Reeb vector field of λ. Note that R ≡ − 1

2k inside each Λ̂smn . Then,

Rnew = R ·
∏
n≥0 1/(1± ∂

∂r cn) is a well-defined non-zero function on N̂ bounded from above and below,

where ± corresponds to either side of the surgery, as usual. By construction, RnewF̂ is the Reeb vector
field of λnew and we conclude that λnew is a virtual contact form for (N,Ω).
Since this is a special case of the general Anosov Dehn surgery, the new flow ψt is Anosov. If the knot
c is both simple and separating, then the new flow is also non-algebraic by theorem 3.12 as the proof
of this result only relied on topological properties of UΣ ∼= Sk. Note that there are admissible knots
that are simple and separating since we could have taken any closed geodesic. Thus, we constructed a
non-algebraic virtually contact Anosov Hamiltonian structure (N,Ω). Of course, the Foulon-Hasselblatt
surgery also yields such structures since HS-contact implies virtually contact. However, we can verify
that our new structure is not covered by their examples:

61



3.4 Surgery for Virtually Contact Structures

Theorem 3.31. There exist non-algebraic virtually contact Anosov Hamiltonian structures in dimension
three that are not HS-contact.

To prove this theorem, we first inquire about the regularity of the associated 1-forms of Anosov flows.

Lemma 3.32. Given an Anosov flow ρt : M → M , the bundle Es ⊕ Eu (and, hence, the associated
1-form of the flow) has the same regularity along orbits.

Proof. Let Π: Es ⊕Eu →M denote the restriction of the projection TM →M to Es ⊕Eu. Abbreviate
this vector bundle by E. Take an open cover Uα of M and local trivializations trα : Π−1(Uα)→ Uα × V
of E, where V ∼= Rn and n = dim(E) = dim(M) − 1. We can equip Es ⊕ Eu with a different bundle
structure E′ as follows. Set U ′α = ρ−t(Uα) so that, by ρt-invariance, Π−1(U ′α) = dρ−t ◦ Π−1(Uα). Then
define tr′α : Π−1(U ′α)→ U ′α × V by tr′α = (ρ−t × idV ) ◦ trα ◦ dρt. It is easily verified that this is a bundle
structure. Moreover, the identity map Es ⊕Eu → Es ⊕Eu is a bundle isomorphism between E and E′.
Suppose p ∈ Uα and ρt(p) ∈ Uβ . Then local trivializations of E and E′ above p are given by trα and
(ρ−t × idV ) ◦ trβ ◦ dρt, respectively, from which we find that Es ⊕ Eu has the same regularity at p and
at ρt(p).

Proof of theorem 3.31. All properties are proved except for not being HS-contact. We need to argue why
no time-change of ψt can be a contact flow. Suppose there was a time-change ψ′′t that is contact. By
lemma 3.15, there is a time-change φ′t of φt so that doing φ′t-surgery yields a flow ψ′t that is smoothly
conjugate to a constant time-change of ψ′′t . Since a constant time-change and a smooth conjugacy preserve
the contact property of a flow, ψ′t is contact. Let λφ′ and λψ′ denote the associated 1-forms. By remark
3.4, these two forms agree outside the surgery domain. The flow φ′t is not contact by hypothesis because
it is a Reeb flow of the Hamiltonian structure provided by corollary 2.44. Since we are definitely not in
the suspension case, theorem 1.32 tells us that λφ′ cannot be smooth everywhere. Let Sing(φ′) denote
the set of points where λφ′ is not smooth and likewise for any other flow. We assumed that ψ′t is contact,
so Sing(ψ′) is empty. That λφ′ = λψ′ outside the surgery domain implies Sing(φ′) ⊂ Λ. Further, the
previous lemma asserts φ′t(Sing(φ′)) ⊂ Sing(φ′) ⊂ Λ for all times t. However, this contradicts Λ being a
flow box.
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A Appendix

A.1 The Tangent and Cotangent Bundle

We will show that for every Riemannian manifold (M, g) the unit tangent bundle admits a canonical
contact form. But first, we recall the splitting of the tangent bundle into its horizontal and its vertical
part. Let us use the notation 〈·, ·〉 for g. From now on, we will identify TM and T ∗M via the Riemannian
metric, TM

∼−→ T ∗M, u 7→ 〈u, ·〉. Let ∇ be the Levi-Civita connection of g and π : T ∗M → M the
projection map. To ∇ there is an associated connection map κ defined as follows. Given X ∈ T (T ∗M),
take a path c(t) = (x(t), u(t)) in T ∗M with ∂tc(0) = X. Then κ : T (T ∗M) → T ∗M maps X to ∇tu(0).
This map together with the projection map induces an isomorphism of vector bundles

T (T ∗M)
∼−→ π∗(TM)⊕ π∗(T ∗M), X 7→ (dπ(X), κ(X)).

We call π∗(TM) the horizontal component of T (T ∗M), π∗(T ∗M) the vertical component, and write

XH = dπ(X), XV = κ(X), and X = (XH , XV ).

We always implicitly assume this splitting when dealing with second tangent bundles. Using this splitting,
we can define a Riemannian metric gs on T ∗M called the Sasaki metric by

gs(X,Y ) = 〈XH , YH〉+ 〈XV , YV 〉.

Moreover, we also get an almost complex structure Jg on T ∗M via Jg(X) = (−XV , XH). Our goal now
is to find a 1-form λ0 on T ∗M with the following properties:

(1) ω0 = −dλ0 is a symplectic form on T ∗M,

(2) (gs, ω0, Jg) is a compatible triple, i.e. ω0(·, Jg·) = gs(·, ·),
(3) the restriction of λ0 to the unit cotangent bundle U∗M is a contact form.

Let us verify that the Liouville 1-form (λ0)(x,u)(X) = 〈u,XH〉 does the job. Using the geodesic vector
field on T ∗M given by G(x, u) = (u, 0) (neglecting the base-point), we can rewrite λ0 as

λ0(X) = 〈dπ(G), dπ(X)〉 = gs(G,X).

Note that the connection π∗(∇) on the bundle π∗(TM)→ T ∗M clearly preserves the inner product 〈·, ·〉
under parallel transport as it is just the pullback of ∇, so it is a Riemannian connection on π∗(TM)
with respect to 〈·, ·〉. Since dπ(G) is simply the “identity section” of π∗(TM) in the sense that it maps
(x, u) ∈ TM to ((x, u); (x, u)) ∈ π∗(TM), we have, by definition of κ, (π∗∇)X(dπ(G)) = κ(X) for any
vector field X on T ∗M . Furthermore, π∗∇ surely is torsion-free since ∇ is. We can now deduce a nice
representation for dλ0, where we use the notation ∇′ = π∗∇:

dλ0(X,Y ) = LX (λ(Y ))− LY (λ(X)) + λ([X,Y ])

= LX (〈dπ(G), dπ(Y )〉)− LY (〈dπ(G), dπ(X)〉) + 〈dπ(G), dπ([X,Y ])〉
= 〈∇′Xdπ(G), dπ(Y )〉+ 〈dπ(G),∇′Xdπ(Y )〉
− 〈∇′Y dπ(G), dπ(X)〉 − 〈dπ(G),∇′Y dπ(X)〉+ 〈dπ(G), dπ([X,Y ])〉

= 〈κ(X), dπ(Y )〉 − 〈κ(Y ), dπ(X)〉
+ 〈dπ(G),∇′Xdπ(Y )−∇′Y dπ(X) + dπ([X,Y ])︸ ︷︷ ︸

=0

〉

= 〈κ(X), dπ(Y )〉 − 〈κ(Y ), dπ(X)〉.
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A.2 Dehn Surgery

Thus, ω0 takes the simple form

ω0(X,Y ) = 〈XH , YV 〉 − 〈XV , YH〉,

which is clearly non-degenerate. Further, in this form, the equation ω0(·, Jg·) = gs(·, ·) becomes evident.
Lastly, λ0∧ωn−1

0 never vanishes, which can be seen as follows: Take a g-orthonormal basis v0, . . . , vn−1 of
TxM with v0 = u. Then T(x,u)UM is spanned by the vectors Xj = (vj , 0), 0 ≤ j ≤ n−1 and Yj = (0, vj),
1 ≤ j ≤ n− 1. By orthonormality, it holds that ω0(Xj , Yk) = δj,k as well as ω0(Xj , Xk) = 0 = ω0(Yj , Yk)
and, hence, a quick induction step shows ωk0 (Xj1 , Yj1 , . . . , Xjk , Yjk) = k!, for any 1 ≤ j1, . . . , jk ≤ n− 1.
Thus,

λ0 ∧ ωn−1
0 (X0, X1, Y1, . . . , Xn−1, Yn−1) = (n− 1)!,

so the restriction of λ0 to the unit tangent bundle is indeed a contact form.

Remark A.1. We can also define λ0 on T ∗M by (λ0)(x,u)(X) = u(dπ(x,u)(X)). Therefore, there is a
canonical 1-form on T ∗M independent of the Riemannian metric. However, we need an explicit Rieman-
nian metric to translate this 1-form to TM . In local coordinates (x1, . . . , xn, u1, . . . , un) on T ∗M , λ0 and
ω0 become λ0 =

∑n
k=1 ukdxk and ω0 =

∑n
k=1 dxk ∧ duk, which also shows non-degeneracy.

We would like to briefly recall that graphs of 1-forms are Lagrangian submanifolds of the cotangent
bundle equipped with the standard symplectic form if and only if the 1-form is closed. Thus, suppose N
is the graph of a 1-form µ on M . Let s denote the actual map M → T ∗M, x 7→ (x, µx) whose graph is
the submanifold N . Then we compute

(s∗λ0)x(u) = µx(dπ ◦ ds(u)) = µx(u).

Therefore, we find that N is a Lagrangian submanifold of (TM,ω0) if and only if

0 = s∗ω0 = −s∗dλ0 = −dµ.

A.2 Dehn Surgery

A Dehn surgery is the process of cutting a solid 3-torus out of a manifold and gluing it back in a
different way. The gluing is specified by a pair of integers (p, q) that represent the homology class in
H1(T 2) ∼= Z⊕Z to which we glue the meridian and the (fixed) longitude of the boundary T 2 of the solid
torus. Up to isotopy, this uniquely determines the manifold obtained from the Dehn surgery. Even more
so, the surgery coefficient p/q ∈ Q ∪ {∞} determines the surgery up to isotopy. The picture simplifies
for p/q ∈ N. Then instead of cutting and gluing a solid torus, we can imagine cutting the given torus
along an annulus and gluing the two annuli back together with a twist. This twist leaves one boundary
component of the annulus fixed whereas it rotates the other boundary component p/q-times. Here is how
the surgery is technically conducted in the case p/q ∈ N.
Denote the ambient manifold by M and the annulus by A. Pick a tubular neighborhood of A in M
denoted by Ψ: (−η, η) × A = Λ ↪→ M . Let V and W denote the images of the restriction of Ψ to
(−η, 0]×A and [0, η)×A, respectively. Next, cut M open along the annulus, and consider V and W as
subsets of Mcut, each with a boundary diffeomorphic to A. Suppose we are also given a diffeomorphism
D of the annulus, the gluing map. We require D to smoothly tend to the identity map as we near the
boundary of the annulus. To obtain a Dehn surgery with coefficient p/q ∈ N, the gluing map D is taken
so that it fixes one boundary component of A point-wise and rotates the other boundary component p/q
times. Let us introduce the function

Φ̃ : V tW → Λ, Φ̃(x) =

{
Ψ−1(x), if x ∈ V,(
id×D−1

)
◦Ψ−1(x), if x ∈W.
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A.2 Dehn Surgery

This map will be used to write down an atlas for the smooth structure on the glued manifold. The gluing
is up next. Define an equivalence relation on Mcut by identifying

∂V 3 x ∼ Ψ
(
0, D ◦ prA ◦Ψ−1(x)

)
∈ ∂W,

where prA is the projection of Λ to A. Points outside ∂V and ∂W are untouched. This just means that
we identify x and D(x) on A, but working in the cut tubular neighborhood. Let π : Mcut → N = Mcut/ ∼
denote the corresponding quotient map. Since for x ∈ ∂V

Φ̃
(
Ψ
(
0, D ◦ prA ◦Ψ−1(x)

))
=
(
0,prA ◦Ψ−1(x)

)
= Ψ−1(x) = Φ̃(x),

the map Φ̃ descends to a function Φ: π(V tW )→ Λ on the quotient, which is actually a homeomorphism.
A smooth atlas on N that agrees with the old smooth structure away from the surgery is now given as
follows: take any chart (U, φ) on M that does not intersect A and add the chart (π(U), φ ◦ π−1|π(U));
given a chart (U, φ) on M meeting the annulus, add a chart for N by(

(Ψ ◦ Φ)−1(U), φ ◦Ψ ◦ Φ
∣∣∣
(Ψ◦Φ)−1(U)

)
.

Since D is the identity at the boundary of A, this structure is compatible with the old structure outside
the annulus. Note that the inverse of Φ gives us a smooth parametrization of a tubular neighborhood of
the glued region,

Φ−1 : Λ→ π(V tW ), (r, y) 7→

{
Ψ(r, y), if r ≥ 0,

Ψ ◦ (id×D)(r, y), if r < 0.

Using this parametrization together with the observation that π maps M \A identically onto N \A, we
can check whether any interesting objects on M are preserved by the surgery. Immediately, we can check
that the vector field ∂

∂r remains unchanged since d (Φ ◦ π ◦Ψ)
(
∂
∂r

)
= ∂

∂r on {r 6= 0}. We also have

Ψ−1 ◦ π−1 ◦ Φ−1(r, y) =

{
(r, y), if r > 0,

(r,D(y)), if r < 0,

so that the pullback of a differential form λ on Λ under this map is

(
Ψ−1 ◦ π−1 ◦ Φ−1

)∗
λ =

{
λ, if r > 0,

(id×D)
∗
λ, if r < 0,

Hence, a differential form λ on M continues to describe a well-defined differential form on N if its local
expression Ψ∗λ in Λ is invariant under (id×D).
We note that we had to fix a tubular neighborhood of A to conduct the surgery. Let us investigate what
happens when we use a different tubular neighborhood Ψ′ : (−η′, η′)×A = Λ′ ↪→M . We may replace Λ
and Λ′ so that Ψ(Λ) = Ψ′(Λ′). Denote the change of coordinates map by C = Ψ′−1 ◦Ψ: Λ→ Λ′. Since
we are dealing with tubular neighborhoods, C is of the form C(r, s, w) = (C1(r, s, w), s, w). Now define
Φ′ analogous to Φ above. The resulting manifold N ′ is the same topological space as N because Ψ and
Ψ′ are the same when restricted to {0} ×A. However, their smooth structure usually does not agree for
otherwise

Φ′ ◦ Φ−1 : Λ→ Λ′, (r, s, w) 7→

{
C(r, s, w), if r > 0,(
id×D−1

)
◦ C ◦ (id×D) (r, s, w), if r < 0

=

{
(C1(r, s, w), s, w), if r > 0,

(C1(r,D(s, w)), s, w), if r < 0
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would be a diffeomorphism, but it is not even continuous if C1 is not D-invariant in the (s, w)-coordinates.
However, N and N ′ are isotopic smooth structures as can be seen from creating a smooth structure Nt
interpolating N and N ′ by taking an isotopy from C1 to the identity. Furthermore, any diffeomorphism
hloc : Λ→ Λ′ that equals C near the boundary of Λ gives rise to a global diffeomorphism

h : N → N ′, h(x) =

{
x, if x /∈ Φ−1(Λ),

Φ′−1 ◦ hloc ◦ Φ(x), if x ∈ Φ−1(Λ).

Taking hloc to be of the form hloc(r, s, w) = (h1(r, s, w), s, w), this diffeomorphism sends the vector field
∂
∂r to

(
∂
∂rh1

)
∂
∂r′ .

A.3 A Theorem by Egorov

In the proof of lemma 1.31, we need to use a well-known result from measure theory by Egorov. Because
the version we need is formulated slightly differently than the one usually encountered, we provide a
proof.

Theorem A.2 (Egorov). Suppose µ is a finite Radon measure on a subset Ω of euclidean space RN and
fn : Ω → R are µ-measurable functions. Further, suppose that point-wise fn(x) → ∞ on a set R ⊂ Ω of
positive measure µ(R) > δ > 0. Then there exists a compact set K ⊂ R with µ(K) > δ on which fn →∞
uniformly, i.e. infx∈K fn(x)→∞ as n→∞.

Proof. Consider the sets Ci,j = R ∩
⋃∞
k=j{x ∈ Ω | fn(x) ≤ 2i}. These are clearly µ-measurable and

satisfy

lim
j→∞

µ(Ci,j) = µ
( ∞⋂
j=1

Ci,j

)
= µ(∅) = 0,

by hypothesis. Take ε < µ(R) − δ. Then every i ∈ N admits some k(i) ∈ N with µ(Ci,k(i)) < ε/2i+1.
Define A = R \

⋃∞
i=1 Ci,k(i) so that µ(R \ A) < ε/2. It holds that infx∈A fn(x) > 2i for n ≥ k(i) by

construction. Since µ is a Radon measure, there exists a compact set K ⊂ A with µ(A \K) < ε/2. In
particular,

µ(K) = µ(R)− µ(R \A)− µ(A \K) > µ(R)− ε > δ.
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