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Abstract: We first show that the Julia set of a holomorphic map on the Riemann sphere is the
closure of the repelling periodic points and discuss Sullivan’s classification of the Fatou set. We then prove
that the Julia set of z → zd is either connected or totally disconnected and introduce the Mandelbrot
set, of which we thereafter show connectedness. We proceed by using polynomial-like maps to show
the existence of quasi-conformal copies of the Mandelbrot set inside itself. Lastly, by using holomorphic
motions, we prove that the boundary of the Mandelbrot set has Hausdorff dimension two.
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An Introduction to Complex Dynamics and the Mandelbrot Set

1 Introduction

The simplest of maps such as polynomials of low degree can exhibit some extraordinary dynamics. For
example, it is well known that the polynomial z → z2 restricted to the unit circle, commonly known as the
doubling map, admits chaotic behavior. By considering a bigger picture, we can get much more fascinating
results than in one dimension. We mean to give a broad introduction to the subject of holomorphic
dynamics on the Riemann sphere. That is, the system in consideration will always be a holomorphic
map R : C→ C. To investigate the above example in a more general way, Fatou and Julia independently
introduced what we now call the Fatou and the Julia set of a given system. Roughly speaking, these
represent the regions on the sphere where we have simple and exotic dynamics, respectively.
In the first part of this paper we will investigate the nature of these sets. Our main discoveries will be
that the Julia set is the closure of the repelling periodic points and the Fatou set reduces to finitely many
periodic components, which are fully described by Sullivan’s classification. We conclude that section
by studying polynomials, for which we usually can get much more intricate results than for a general
holomorphic map. Most importantly, we show that for the polynomial z → zd + c, the Julia set must
either be connected or totally disconnected, and we give a sufficient and necessary condition for each.
In the second part we move on to the Mandelbrot set M, defined as the set of parameters c for which
the above polynomial has a connected Julia set. This is a parameter space and, in fact, in degree two
it embodies all possible classes of polynomial dynamics. We begin that second part by proving some
standard results on the topology of M, for example, that it is connected and full. We proceed by
studying hyperbolicity ofM, by which we actually study hyperbolicity of dynamical systems. The pitch
will be a review of the two conjectures about local connectedness and density of hyperbolicity, which are
open problems and are still objects of current research. In the end, we give a brief sketch of the material
covered in the famous Orsay notes, written by Douady and Hubbard.
Chapters 4 and 5 are the highlights of this thesis. They both center around the self-similarity ofM, each
using a different notion. In chapter 4 we use polynomial-like maps, which were introduced by Douady
and Hubbard, to show the occurrence of quasi-conformal small copies of M at its boundary. In the last
chapter, we prove that the Mandelbrot set is a fractal. Namely, we show that the Hausdorff dimension of
the boundary ∂M is two. We first review the construction of the Hausdorff dimension and then introduce
the tool of holomorphic motions to prove the main theorem.

The author would like to thank Professor Will Merry for introducing him to the field of complex
dynamics and dynamics in general, and for his excellent guidance throughout the preparation of this
thesis.
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2 The Julia and the Fatou Sets

2.1 Rational Dynamics

Let R : C→ C be a non-constant holomorphic map. Since holomorphic maps are open, R(C) is an open
and compact subset of C and R must be surjective. It is a standard result that R automatically is a
rational map. This can be seen as follows. If R had infinitely many poles, then it would be constant ∞
by the identity principle. If it has a single pole at ∞, then the restriction to C is an entire function and
1/R( 1

z ) has a removable singularity at 0. Hence, in this case, R must be a polynomial. Now suppose
z1, . . . , zn are its poles, where we assume that ∞ is not one of them since otherwise we could consider 1

R
instead, and that kj is the order of the pole at zj . Then

R(z) ·
∏

1≤j≤n

(z − zj)kj

is a polynomial by the previous step. Thus, R is rational.
The degree of R is the maximum of the degrees of its enumerator and its denominator. If the degree
is 1, then R is a Möbius transformation, whose dynamics are already understood entirely. That is why
we always consider maps of degree d ≥ 2. Let us clarify that whenever the variable d is used, it always
denotes the degree of the map we are currently working with.
We will recall a few facts about the dynamics of such a map. For a more detailed exhibition of the
material, the reader may consult Blanchard’s survey article [3] and Carleson and Gamelin’s textbook [5],
which this and partially the next chapter is based upon.

Since the study of dynamics evolves around the study of orbits, let us begin by specifying a few types
that admit certain behavior.

Definition 2.1. Suppose that Rn(p) = p. The eigenvalue of the periodic orbit {p,R(p), . . . , Rn−1(p)} is

λp = (Rn)′(p) =
∏

0≤j≤n−1

R′(Rj(p))

We say a periodic orbit is
1. attractive if 0 < |λp| < 1,
2. superattractive if λp = 0,
3. repelling if |λp| > 1,
4. neutral if |λp| = 1 and
5. parabolic if λp is a root of unity.

The regions where the dynamics of a rational map are particularly easy to study are the ones close to
an attractive periodic orbit since each nearby point converges to that orbit. In order to talk about such
behavior in a rigorous way, we give such a region a name.

Definition 2.2. Given a (super-)attractive fixed point p of R, the attractive basin, or stable basin1 is

W s(p) = W s(p,R) = {z ∈ C | Rk(z)→ p as k →∞}

The immediate attractive basin A(p) is the connected component of W s(p) containing p.
Given a (super-)attractive periodic orbit {p,R(p), . . . , Rn−1(p)}, the attractive basin is

W s(Orb(p)) =
⋃

0≤j≤n−1

W s(Rj(p), Rn)

1Similarly, we can define the unstable basin Wu(p) = {R−k(z)→ p}
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The immediate attractive basin A(Orb(p)) is the union of the connected components containing the Rj(p),
0 ≤ j ≤ n− 1. We often just write W s(p) and A(p) instead of W s(Orb(p)) and A(Orb(p)).

One goal of this chapter is to get an idea of not just these, but all the regions where the dynamics
behave nicely. To formalize the idea of nice behavior, the notion of equicontinuity comes in useful.
Namely, we consider the family of iterates (Rn)n≥0. Equicontinuity of this family describes the behavior
of the orbits of R. For historical reasons, we use the theorem of Arzelà-Ascoli and write everything in
terms of the notion of normality. However, in the proofs we sometimes freely change between considering
normality and equicontinuity.

Definition 2.3. The Fatou set of R, denoted by F (R) or simply F , contains all the points in C for which
there exists an open neighborhood on which (Rn)n≥0 is a normal family. The Julia set, denoted by J(R)
or J , is the complement of the Fatou set.

The Fatou set is open by definition. Clearly, if an attractive periodic point p exists, then (Rn)n≥0 is
equicontinuous on W s(p) and so W s(p) ⊂ F . But the existence is not necessary. In fact, the Fatou set
can be empty. We will see a sufficient condition for this later on in corollary 2.10. On the other hand,
the Julia set never is empty.

Proposition 2.4. The Julia set is always non-empty.

Proof. If the Julia set was empty, then (Rn)n≥0 was normal on all of C. Let S denote a limit function of
this family. Being holomorphic, S has some degree d′ <∞. On the other hand, each map Rn has degree
dn, contradicting convergence to S on a subsequence.

Just like we think of the Fatou set as the region with nice dynamics, the Julia set represents the region,
where R displays exotic, sometimes chaotic behavior (a condition for chaos will be given further below).
In view of proposition 2.4 we can say that a rational map always exhibits some interesting dynamics. We
prove below that the Fatou and the Julia set are completely invariant under R. Thus, any orbit remains
in either one of the two sets and we can say that no orbit first admits nice behavior but becomes more
complex later on. To get an overall picture of the dynamics of R, we can therefore simply study the
Fatou and the Julia set.

Proposition 2.5. The Fatou set is completely invariant. Consequently, the Julia set is, too.

Proof. Obviously, if (Rn)n≥0 is normal, then so is (Rn)n≥1. This shows R−1(F ) ⊂ F and the inclusion
R(J) ⊂ J follows. Similarly, if (Rn)n≥0 is normal on U ⊂ F , then (Rn)n≥1 is normal on R(U). The
latter is well-defined because R(U) is again open as holomorphic maps are open. Adding a single map to
a family of normal maps does not potentially annihilate normality. Hence, (Rn)n≥0 is normal on R(U),
as well. We have proved R(F ) ⊂ F and as above, this inclusion implies R−1(J) ⊂ J . In fact, since by
surjectivity

R(F ) ∪R(J) = C = R−1(F ) ∪R−1(J)

we must have equalities everywhere.

We already noted that the Fatou set contains attractive periodic orbits. Likewise, we can immediately
classify some of the elements in the Julia set.

Proposition 2.6. If p is a repelling periodic point for R, then p lies in the Julia set.

Proof. Suppose for contradiction (Rn)n≥0 is normal in a neighborhood of p. If q is the period of p, then
(Rqn)n≥0 is normal near p, as well. By definition, there is a holomorphic function f defined on some
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compact neighborhood of p to which (Rqn)n≥0 converges on a subsequence (nk)k≥0. A contradiction
follows immediately:

∞ > |f ′(p)| = | lim
k→∞

(Rqnk)′(p)| = lim
k→∞

|R′(p)|qnk =∞

We can ask ourselves what other points there might be in the Julia set. One of the main discoveries
of early complex dynamics is that the repelling periodic points constitute the majority.

Theorem 2.7. The Julia set is the closure of the repelling periodic points.

Note that we have now characterized the Julia set independently of the Fatou set. We postpone the
proof of this result for a while. First, we need to develop a deeper understanding of the Julia set. Since
we are dealing with normality, recall Montel’s theorem, which provides a considerably weak criterion for
normality. For details on this, see for instance [6, p. 300].

Theorem 2.8 (Montel). Suppose (fn)n≥0 is a family of holomorphic maps. If there are three distinct
points that are omitted by each fn, then the family is normal.

Consequently, this theorem tells us that on a neighborhood of the Julia set the family (Rn)n≥0 omits
at most two points. To be more precise, if U is an open set intersecting J , then

EU = C \
⋃
n≥0

Rn(U)

has cardinality at most 2. Moreover, if V ⊂ U is any smaller open set still intersecting J , then EU ⊂ EV .
Hence, for any point z ∈ J , we can pick an open neighborhood U so small that Ez = EU is independent of
the choice of U . The set Ez is called the set of exceptional points for z. We will see that it is independent
of the point z ∈ J and that it will give us some useful information on the dynamics of R. Namely, the
cardinality of Ez ∈ {0, 1, 2} will determine a conjugacy of R to a simpler map.

Proposition 2.9. Let z ∈ J . Firstly, the set Ez is independent of z and a subset of the Fatou set.
Secondly, if Ez consists of exactly one point, then R is conjugate to a polynomial. If Ez consists of two
points, then R is conjugate to either z → zd or z → z−d.

Proof. We first show the conjugacy statements and deduce afterwards the independence of z and the
inclusion in the Fatou set. Assume Ez is non-empty. Pick a small open neighborhood U of z such that
Ez = EU .

R−1(EU ) ⊂ C \
⋃
n≥−1

Rn(U) ⊂ EU

shows that Ez is backward invariant. By surjectivity, R−1(Ez) contains as many elements as Ez. Hence,
Ez either consists of a single fixed point, two fixed points, or an orbit of period two. In the first case, take
a Möbius transformation φ that maps the point in Ez to ∞. Then the holomorphic map φ ◦R ◦ φ−1 has
∞ as a fixed point and no other point gets mapped to ∞. Put differently, this map has no pole besides
∞, meaning it is a polynomial. This proves the first case.
The second case is proved in a similar fashion. Pick a Möbius transformation φ that maps one point in
Ez to 0 and the other one to ∞. Then φ ◦R ◦ φ−1 either has two fixed points at 0 and ∞, or maps 0 to
∞ and ∞ to 0. In both cases no other point gets mapped to 0 or ∞. In the first case this map is again a
polynomial. But this time we know in addition that its only root is 0, which is therefore of multiplicity
d. Hence, φ ◦ R ◦ φ−1 is of the form z → Czd. Of course, the constant C does not affect the conjugacy
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class. For the second case, let ψ denote the chart ψ(z) = 1
z . Then the composition ψ ◦ φ ◦ R ◦ φ−1 has

fixed points 0 and ∞. By the first argument, this map is of the form z → Czd, and so φ ◦ R ◦ φ−1 is of
the form ψ−1(Czd) = 1

Czd
.

We have discussed the two different conjugacy classes R can have. In all cases above, the Möbius
transformation depended a priori on Ez and hence on z. But a posteriori, we know that R is conjugate
to one of the above maps and we can pick a conjugating map φ independent of any z. Then clearly, for
any z ∈ J the exceptional points are φ−1(∞) or φ−1({0,∞}), respectively. Moreover, this shows that
there cannot be two points such that Ez is empty for one, but non-empty for the other. We can conclude
that Ez is independent of z.
Lastly, we need to show that Ez is contained in the Fatou set. If Ez is empty, this is trivial. If R is
conjugate to a polynomial with the singleton Ez corresponding to ∞, then Ez is a superattractive fixed
point, hence in the Fatou set. If Ez has two points, R is conjugate to zd or z−d with the points in Ez
corresponding to the origin and ∞. Either way, the points in Ez are both superattractive fixed points or
a superattractive orbit of period two.

Now that we know Ez does not depend on z, we drop the subscript and simply call it the set of
exceptional points E(R) or E. As a consequence, we can give a class of examples when the Fatou set is
empty.

Corollary 2.10. If the Julia set has non-empty interior, then it is all of C.

Proof. With U = interior(J), invariance of J yields

C \ E =
⋃
n≥0

Rn(U) ⊂ J

Since J is closed and E consists of at most two points, the assertion follows.

Proposition 2.9 has more interesting consequences. We do not know yet how to efficiently compute
the Julia set. However, we can show that it suffices to find a single point in it and compute its backward
orbit. Note that, depending on the degree of R, this might still not be an easy task for a computer. It is
convenient for maps of small degree, though.

Corollary 2.11. For any z ∈ J , the backward orbit of z is dense in J .

Proof. By invariance of J , the inclusion Orb–(z) ⊂ J is trivial. Conversely, suppose w ∈ J . As a point
in J , z surely is not an exceptional point by the last proposition. Hence, for any small neighborhood U
of w we have z ∈

⋃
n≥0R

n(U). But this means exactly that the backward orbit of z enters an arbitrary
small neighborhood of w.

Remark 2.12. The proof of the last corollary actually shows the stronger statement that J ⊂ Orb–(z)
for any z ∈ C \ E.

Thus, any backward orbit traverses densely through the Julia set. We can use this to see that there
can be no proper, non-empty, closed, invariant subsets of J , since for such a subset K we would have

J = Orb–(z) ⊂ K

for any z ∈ K. In particular, whenever an attractive periodic point exists, we get yet another description
of the Julia set.

Corollary 2.13. If p is an attractive periodic point, then J = ∂W s(p).
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Proof. Consider some open neighborhood U of a point z ∈ ∂W s(p). By definition of W s(p), any orbit
starting in U ∩W s(p) converges to p, while any orbit starting in U ∩ (C \W s(p)) cannot enter W s(p).
Hence, (Rn)n≥0 cannot be equicontinuous on U and therefore z ∈ J . Thus, ∂W s(p) is a closed and
invariant subset of the Julia set. Moreover, it cannot be empty, since this would mean that the Fatou set
is the entire sphere, contradicting non-emptiness of J .

Remark 2.14. Obviously, a more general result holds as well: If U is any completely invariant component
of the Fatou set, then J = ∂U .

The exceptional points have one more very important consequence.

Proposition 2.15. The Julia set is perfect.

Proof. We claim that for any point z ∈ J we can find a second point w ∈ J such that z is in the forward
orbit of w but w is not in the forward orbit of z. Suppose for now the claim holds. Let U be an arbitrary
small neighborhood of z and pick w as in the claim. w ∈ J cannot be an exceptional point, hence it is
contained in

⋃
n≥0R

n(U). Take n ≥ 0 and y ∈ U with Rn(y) = w. Since by the claim w is not in the
forward orbit of z we must have y 6= z. Moreover, by invariance of the Julia set y ∈ J ∩ U . This proves
that z is an accumulation point, since U was arbitrarily small.
It remains to show the claim. If z is not a periodic point, then we can pick any w ∈ Orb–(z). Suppose
now that Rn(z) = z and that no other point gets mapped to z under Rn (if there is another point, then
we simply take that one). Take a Möbius transformation φ with φ(z) =∞. Then φ◦Rn ◦φ−1 has a fixed
point at ∞ and maps no other point to ∞. As previously, φ ◦Rn ◦ φ−1 must be a polynomial. But then
∞ ∈ F (φ ◦Rn ◦ φ−1) and so z ∈ F (φ ◦Rn) = F (Rn) ⊂ F (R), a contradiction. Therefore, there must be
another point w with Rn(w) = z. By invariance, w ∈ J and w is not in the forward orbit of z because
Rm(z) = w would imply Rn+m(z) = z, i.e. m is a multiple of n and Rm(z) = z 6= w.

We want to prove that the Julia set is exactly the closure of the repelling periodic points. That it is
perfect was a key step for that. However, it still does not follow immediately. We first prove a slightly
weaker statement.

Proposition 2.16. The Julia set is contained in the closure of all the periodic points.

Even to prove this weaker version we need one more auxiliary result. At first, this result may seem
unrelated but note that critical values play a crucial role when picking inverse branches of functions. As
a reminder: Critical points of R are points where the derivative of R vanishes. A critical value is the
image of a critical point.

Proposition 2.17. The number of critical points of R is at most 2d− 2. If R is a polynomial, then the
number of critical points is at most d.

To prove this we want to use the Riemann-Hurwitz formula (see [13, p. 301]). Let us first review some
results from the theory of covering maps. For details, the reader may consult [11].

Lemma 2.18. R : C→ C is a branched covering map of degree d.

Proof. We need to show that R is an unbranched covering map except on a nowhere dense set. Consider
R : C \ C → C \ V , where C denotes the set of critical points of R and V the set of critical values. By
the inverse function theorem, R is locally injective on C \ C. As an open map, R is therefore a local
homeomorphism on this set. Moreover, R is discrete, which is a consequence of the identity principle and
compactness of C. Another consequence of compactness is that R is a proper map. Now let z ∈ C \ V
and R−1(z) = {z1, . . . , zk}. As a local homeomorphism, R admits neighborhoods Uj of z and Wj of
zj such that R : Wj → Uj is a homeomorphism. Since {z1, . . . , zk} is discrete, we can assume that the
neighborhoods Wj are pairwise disjoint. Denote W =

⋃
1≤j≤kWj and set A = R((C \ C) \W ). The set
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A is closed in C \V since R is proper and hence, the set U =
⋃

1≤j≤k Uj \R(A) is an open neighborhood

of z. Finally, define Vj = Wj ∩R−1(U) to see that R : C \C → C \V is an unbranched covering map. By
the Fundamental Theorem of Algebra, its degree has to be d. We use the identity principle together with
compactness once more to see that the set C is finite. Hence, R : C → C is a branched covering map of
degree d.

As a covering map, R : C \ C → C \ V gives rise to liftings of continuous maps. Using that R is
holomorphic, the liftings of holormorphic maps will be holomorphic themselves.

Lemma 2.19. If f : C \C → C \ V is holomorphic and g is a lifting of f with respect to R (restricted to
C \ C), then g is itself holomorphic.

Proof. As a local homeomorphism, R is locally univalent and therefore locally biholomorphic. Hence,
locally g is just the composition of a holomorphic inverse of R with f .

This lemma conveys a particularly useful result when taking f to be the identity.

Corollary 2.20. For any simply connected, pathwise connected and locally pathwise connected subset
D ⊂ C \ V , any z ∈ D and any w ∈ R−1(z), there exists a unique holomorphic inverse to R on D
mapping z to w.

Proof. The topological properties of D ensure the existence and uniqueness of a lifting with respect to
the identity, which maps z to w (see [11, p. 26]). Now apply the last lemma.

Remark 2.21. Note that a simply connected open subset always satisfies pathwise connectivity and local
pathwise connectivity.

For the branch points of R : C→ C we can define their ramification index. The ramification index of
a point p is the unique integer ep for which there exists an open neighborhood U of p such that any point
z ∈ R(U) \ {R(p)} has exactly ep preimages in U . In our case, ep is exactly the multiplicity of R′(z) = 0
at p plus 1, where we consider the multiplicity to be 0 if R′(p) 6= 0. Hence, ep > 1 if and only if p is a
critical point.
Let us now prove the bounds on the number of critical points.

Proof of proposition 2.17. The Euler characteristic of the sphere is 2 ([25, p. 190]). The Riemann-Hurwitz
formula states

χ(C) = d · χ(C)−
∑
p∈C

(ep − 1)

which can be rewritten as

2d− 2 =
∑
p∈C

(ep − 1)

The summand ep − 1 is 0 if p is not a critical point. On the other hand, if p is a critical point, then the
summand is at least 1. Hence,

2d− 2 =
∑
p∈C

(ep − 1) ≥ #{critical points of R}

If R is a polynomial, then the ramification index of ∞ is d. The assertion follows from

d− 1 =
∑

p∈C\{∞}

(ep − 1) ≥ #{critical points of R other than ∞}
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Now we can prove that the periodic points are dense in the Julia set.

Proof of proposition 2.16. Proving a density statement for J can be reduced to proving a density state-
ment for

K = J \ ({critical values of R} ∪ {poles of R} ∪ {∞})

because J is perfect and the subtracted set is finite. Suppose for contradiction we can find an open,
simply connected set U intersecting K that contains no periodic point. Again, we may assume without
loss of generality that U does not contain any critical values, poles or ∞. By corollary 2.20, we can pick
two different inverse branches S1 and S2 of R on U . Define a new family of functions on U by

gn(z) =
Rn(z)− S1(z)

Rn(z)− S2(z)
· z − S2(z)

z − S1(z)

None of the maps gn can take value 0 or ∞ as we excluded the periodic points, the poles and ∞ itself
from U . Lastly, we compute that each gn cannot take value 1, either. Indeed, the following equations are
equivalent:

gn(z) = 1

Rn(z)(S2(z)− S1(z)) = z(S2(z)− S1(z))

Rn(z) = z

where we used that S1 and S2 were chosen to be different branches. By Montel’s theorem, the family
(gn)n≥0 is normal. But then so is the family

Rn(z) = S2(z) +
z − S2(z)

z − S1(z)
· S2(z)− S1(z)

gn(z)− z−S2(z)
z−S1(z)

However, U intersects the Julia set, a contradiction.

We already know that the attractive orbits lie in the Fatou set. But we do not yet know where the
neutral periodic points are located. However, we soon show that there are only finitely many. Since we
only want to prove density of the repelling points, this suffices to conclude theorem 2.7 (here we again
use the fact that the Julia set is perfect). Finiteness of the non-repelling periodic points is shown in
two steps. First we prove that any attractive basin must contain a critical point and use proposition
2.17 to bound the number of attracting orbits. Then we perturb a given map to turn neutral orbits into
attractive ones to which we can apply the previous bound.

Proposition 2.22. For any attractive periodic point p there is a critical point in its immediate attractive
basin.

Proof. Suppose first p is a fixed point. Assume for contradiction there is no critical point in A(p). In
particular, there is no critical value of R, and hence of Rn, either. By corollary 2.20, for any open simply
connected neighborhood U ⊂ A(p) of p, there is an inverse branch Sn of Rn on U with Sn(p) = p. As
the images of Sn are in A(p), the family (Sn)n≥0 is normal on U . A contradiction arises as in the proof
of proposition 2.6. Namely, if (Snk)k≥1 is some convergent subsequence with limit function S, then

∞ > |S′(p)| = lim
k→∞

|(Snk)′(p)| = lim
k→∞

| 1

(Rnk)′(p)
| =∞

Suppose now p is periodic of period n > 1. By the previous part A(p,Rn) contains a critical point of Rn.
Since (Rn)′(p) =

∏
0≤j≤n−1R

′(Rj(p)), R must have a critical point in the immediate attractive basin of
Orb(p).
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Corollary 2.23. The number of attracting periodic orbits is at most 2d− 2. If R is a polynomial, there
are at most d− 1 besides ∞.

We can use these bounds to also count neutral orbits by perturbing the rational map to one that has
attractive orbits where R had neutral ones. However, with our technique not every neutral orbit can
be made attractive and so the resulting bound is not sharp. We sketch its proof so that later it can be
compared to a proof of a sharper bound of d− 1 for polynomials using polynomial-like maps. With the
use of quasi-conformal maps, Shishikura managed to turn every neutral orbit into an attractive one and
obtained the sharp bound of 2d− 2. The bound for polynomials, which we show later, is therefore sharp.

Proposition 2.24. The number of attracting periodic orbits plus half the number of neutral periodic
orbits is at most 2d− 2.

Sketch of proof. Consider N neutral periodic orbits of R. Define S(z, w) = (1 − w)R(z) + w. We can
pick a branch L = {reiθ | r > 0} such that for all w ∈ L close to 0 the map S(·, w) has N/2 attractive
periodic orbits close to the neutral orbits of R (for details see [3, p. 111–112]). Since S(·, w) is a small
analytic perturbation of R, if w is close enough to 0, all attractive orbits of R remain attractive orbits
for S(·, w). It follows from the last corollary applied to S(·, w) that the number of attractive orbits of R
plus N/2 is at most 2d− 2 (in particular, R cannot have infinitely many neutral orbits).

We have successfully bounded the number of non-repelling periodic orbits. Theorem 2.7 now follows
from this fact together with proposition 2.15 and 2.16.
Back at the beginning, we described the Julia set as the region with exotic behavior. Both the density of
the repelling orbits and the property that the backward orbit of any point in the Julia set is dense can
be seen as an explanation. The latter has sort of an equivalent property in the forward direction.

Proposition 2.25. For any open set U intersecting J , there exists an N ≥ 0 such that J = RN (U ∩ J).

Proof. Let z be a repelling periodic point in U ∩ J of period n. Take a small neighborhood z ∈ V ⊂ U
such that V ⊂ Rn(V ). This way, V ⊂ Rn(V ) ⊂ R2n(V ) ⊂ . . . is an increasing sequence. If V is small
enough, then it does not contain an exceptional point. Hence,⋃

k≥0

Rkn(V ) = C \ E ⊃ J

By compactness, J ⊂ RN (V ) ⊂ RN (U) for some large N and by invariance J = RN (U ∩ J).

We have obtained quite a few intricate results on the Julia set. Let us now discuss some properties of
the Fatou set. We first review a few topological properties and then verify with Sullivan’s theorem that
the dynamics on the Fatou set really are simple.

Proposition 2.26. The Fatou set has at most two connected, simply connected and completely invariant
subsets.

Proof. Recall from the proof of proposition 2.17 that

2d− 2 =
∑
p∈C

(ep − 1)

where ep is the ramification index at p. If U is a component as described, then the restriction of R to U is
a branched covering map U → U , with branch points the critical points in U . By the Riemann-Hurwitz
formula

χ(U) = d · χ(U)−
∑
p∈U

(ep − 1)

9
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and since U is homeomorphic to a disk, we have χ(U) = 1. Therefore,

d− 1 =
∑
p∈U

(ep − 1)

If U1, . . . , Un all are such components, then by the first formula

2d− 2 =
∑
p∈C

(ep − 1) ≥
∑

1≤j≤n

∑
p∈Uj

(ep − 1) = n · (d− 1)

In fact, we cannot only count the number of such specific components, but all of them. Recall some
basic terminology: Just like we call a point periodic if Rn(z) = z for some n, we say a component of the
Fatou set is periodic if Rn(U) = U for some n. The notions of eventually periodic and preperiodic (i.e.
eventually periodic but not periodic) are defined analogously.

Proposition 2.27. The number of components of the Fatou set can only be 0, 1, 2 or ∞.

Proof. Assume that there are only finitely many components. Let U be any one of them. By invariance,
each Rn(U) is also some component of the Fatou set. Since there are only finitely many, U must be
periodic. Furthermore, by the finiteness assumption there is some integer N such that every component
is periodic with the same period N . In particular, they are completely invariant for S = RN . By the
last proposition, at most two of them can be simply connected. Suppose for contradiction that there are
more than two. Then we can pick a component U that is not simply connected. By conjugating S with
a Möbius transformation, we may assume that ∞ is in a different component of the Fatou set than U .
Now take a loop γ in U that is not nullhomotopic. Since U is invariant, (Sn)n≥0 is bounded on γ. If D
denotes the component of C \ γ not containing ∞, then (Sn)n≥0 is bounded on D by Cauchy’s integral
formula. Hence, (Sn)n≥0 is normal on D. But by hypothesis D∩ J is non-empty. This is a contradiction
because the Fatou set of R and S coincide. The latter can be seen as follows: Clearly, if (Rn)n≥0 is
normal, then so is (RNn)n≥0. Conversely, if (RNn)n≥0 is equicontinuous, then so is each (R◦Rn)n≥0 and
a finite union of equicontinuous families is again equicontinuous.

Dealing with infinitely many components still is a hard task. Luckily, Sullivan proved that there
is no need for that. He showed that there are finitely many periodic components such that any other
component is a preimage of one of the periodic ones. Since in the study of dynamics we are not interested
in the first finitely many iterates of an orbit, it therefore suffices to study the dynamics on the periodic
components.

Theorem 2.28 (Sullivan, part 1). Every component of the Fatou set is eventually periodic. Moreover,
there are only finitely many periodic components.

For the first statement, see [28, p. 3] or [5, p. 71], and for the second [18, p. 6]. For the periodic
components Sullivan gave a complete classification of all possible dynamics. He proved that the following
scenarios are all that can happen.

Definition 2.29. A periodic component of the Fatou set is called Sullivan domain. Furthermore, a
Sullivan domain is

1. an attractive domain if it is the immediate attractive basin of an attractive, but not superattractive
periodic point.

2. a superattractive domain if it is the immediate attractive basin of a superattractive periodic point.
3. a parabolic domain if its boundary contains a periodic point p with eigenvalue 1, whose period divides

the one of the domain itself, and the forward orbit of every point in the domain converges to the
orbit of p.

10
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4. a Siegel disk if it is simply connected and on this domain R is analytically conjugate to a rotation.
5. a Herman ring if it is conformally equivalent to an annulus and on this domain R is analytically

conjugate to a rotation.

Theorem 2.30 (Sullivan, part 2). Every Sullivan domain is of one of the above types. Moreover,
attracting and parabolic domains both contain infinite forward orbits of critical points and the boundaries
of rotation domains are contained in the closure of the forward orbits of the critical points.

The original discussion is in [18, p. 404] and another proof can be found in the textbook [5, p. 74-79].
The additional result in this theorem enables us to study the behavior of the orbits of critical points to
deduce properties of the Fatou and the Julia set. Let us give a few examples of how to do that.

Corollary 2.31. If every critical point of R is preperiodic (i.e. eventually periodic but not periodic),
then J = C.

Proof. The Fatou set cannot have a superattractive Sullivan domain since such contains a periodic critical
point. Any other Sullivan domain is excluded as well, since they all require the existence of infinite orbits
of critical points.

For polynomials, we can include an additional condition.

Corollary 2.32. Suppose R is a polynomial with superattractive periodic points p1, . . . , pn and ∞ (where
possibly n = 0). If every critical point is preperiodic or has unbounded orbit, then

C = J ∪W s(∞) ∪
⋃

1≤j≤n

W s(pj)

Proof. Similar to the proof of the last corollary, if all the critical orbits are preperiodic or enter W s(∞),
then there cannot be any attractive or parabolic domains, nor Siegel disks or Herman rings. Hence, the
Fatou set can only consist of superattractive domains and its preimages. But for a superattractive periodic
point p the attractive basin is completely invariant and there are no preimages aside from W s(p).

Before, we noted that there can be at most two simply connected, completely invariant components.
Conversely, if we are given such, then we can say a lot about the nature of the Fatou set.

Corollary 2.33. If the Fatou set has two simply connected, completely invariant components, then these
are the only ones and they are superattractive, attractive or parabolic Sullivan domains.

Proof. Let U1 and U2 denote the two given components. From the proof of proposition 2.26 we know

2d− 2 =
∑
p∈C

(ep − 1) ≥
∑

1≤j≤2

∑
p∈Uj

(ep − 1) = 2d− 2

Thus, all the critical points are inside U1 ∪ U2. By the second part of Sullivan’s theorem, there cannot
be any other Sullivan domains since they all require critical orbits inside of them or on their boundary.
Moreover, by the first part of Sullivan’s theorem the only components of the Fatou set are U1, U2 and
their preimages. But by complete invariance U1 and U2 have no preimages other than themselves and it
follows that they are the only components. Lastly, as we observed that all the critical points are inside
U1 and U2, they cannot be Siegel disks or Herman rings.

As another application, Sullivan’s theorem can be used to prove a sufficient condition for expansivity
on the Julia set.

11
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Theorem 2.34. If J ∩Orb+(C) = ∅, where C denotes the set of critical points, then R is expanding on
J , i.e.

∀K > 1 ∃N ∈ N such that ∀n ≥ N ∀z ∈ J : |(Rn)′(z)| > K

The converse is true as well: If R is expanding on J , then J ∩Orb+(C) = ∅.

We slightly modify the proof from [3, p. 119].

Proof. Let D be a simply connected domain with D∩Orb+(C) = ∅ and D∩J 6= ∅. By corollary 2.20, we
can take inverse branches In of every Rn as the critical values of Rn are exactly Rn(C) ⊂ C \D. We first
claim that the family (In)n≥0 is normal in a neighborhood of D ∩ J . To see this, note that a repelling
fixed point of Rn is an attractive fixed point of In. Hence, if p is a repelling periodic point for R of period
q, then there is a small neighborhood Up of p on which the family (Iqn)n≥1 is normal, and hence also
the family (In)n≥0. By theorem 2.7, these points p are dense in J . By compactness, we can cover J by
finitely many such neighborhoods Up1 , . . . , Upk . It is immediate from the definition of normality that the
family (In)n≥0 is normal on the finite union

⋃
1≤j≤k Upj ⊃ J . This concludes the claim.

Let U denote the neighborhood on which (In)n≥0 is normal. Take any convergent subsequence of the
family. We make a second claim: This subsequence necessarily converges to a constant function. Let us
show how the first statement of the theorem follows from this claim and prove the claim afterwards. Since
the subsequence converges to a constant function, the derivatives I ′n limit to zero on this subsequence,
i.e.

∀K > 1 ∃N ∈ N such that for infinitely many n ≥ N ∀z ∈ J : |I ′n(z)| < 1

K

The convergent subsequence was arbitrary and by normality, any subsequence of (In)n≥0 has a convergent
subsequence. Hence, the inequality actually holds for all n ≥ N and not just for infinitely many n. The
assertion now follows from I ′n = 1

(Rn)′ as the maps In are inverse branches of Rn. It remains to prove the

second claim.
First note that the Fatou set is non-empty by hypothesis. Corollary 2.10 tells us that the Julia set must
have empty interior. Now let I denote any limit function of the family (In)n≥0. We will show that
the image of I is contained in the Julia set and, hence, has empty interior itself. If so, then I must
be constant, because any non-constant holomorphic map is open. Suppose for contradiction I has an
image point outside of J . This means that there exists a neighborhood V of J , a point z ∈ U , and
a sequence nk → ∞ such that for each k the point Ink(z) lies outside V . By invariance, the point z
cannot be in the Julia set. Equivalently, we can consider the sequence of points zk = Ink(z) such that
each Rnk(zk) = z ∈ U \ J . Let z0 be an accumulation point of (zk)k≥1. Since each zk was outside of V ,
z0 lies in the Fatou set of R and consequently (Rn)n≥0 is normal in a neighborhood of z0. By uniform
convergence, we have

lim
k→∞

Rnk(z0) = lim
k→∞

Rnk(zk) = z ∈ U \ J

But at the same time, the assumption J ∩Orb+(C) = ∅ together with Sullivan’s theorem assures that the
Fatou set only has attractive or superattractive Sullivan domains. As z0 is in the Fatou set, the sequence
Rnk(z0) must therefore converge to a (super-)attractive periodic point. Thus, z is such a point. Then by
Sullivan’s theorem again, we know that there must be a critical orbit converging to z, which contradicts
U ∩Orb+(C) = ∅. This proves the second claim.
Next, we want to show the converse statement. Suppose R is expanding. The definition of expansivity
rules out the existence of critical points inside J . Thus, the Fatou set cannot have Siegel disks or Herman
rings. If there was a parabolic domain, then the Julia set would contain a parabolic periodic point p.
But then |Rnq(p)| = 1, where q denotes the period of p, contradicting expansivity. Hence, the Fatou
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set consists only of attractive and superattractive domains as well as their preimages. In any case, the
critical orbits converge to the attracting orbits, proving J ∩Orb+(C) = ∅.

To conclude the discussion of rational dynamics, we strengthen proposition 2.25. Namely, under the
right hypothesis, not only can we map a small piece of the Julia set onto itself via RN , but we can map
into it with a quasi-isometry.

Definition 2.35. A function f : X → X on a metric space is a K-quasi-isometry if

1

K
d(x, y) ≤ d(f(x), f(y)) ≤ Kd(x, y) for any x, y ∈ X

A subset A ⊂ X is quasi-self-similar if there exist K > 0 and r0 > 0 such that for any r < r0 and any
x ∈ A, there is a K-quasi-isometry f such that f({ 1

r z | z ∈ Dr(x) ∩A}) ⊂ A.

The definition means that a small piece in A can be expanded to full size (via multiplication with 1
r )

and then mapped into A by a quasi-isometry. Now we consider A to be the Julia set of a rational map.
As a reference for the next result, see [27, p. 48].

Theorem 2.36. If J ∩ Orb+(C) = ∅, where C again denotes the set of critical points, then J is quasi-
self-similar.

In the next chapter we will investigate the special case where R is a polynomial. One of the main
results will again be linked to the behavior of the critical orbits.

2.2 Polynomial Dynamics

Let R = p : C → C be a polynomial of degree d ≥ 2. Since ∞ always is a superattractive fixed point
for p, whenever we speak of a (super-)attractive periodic orbit we implicitly mean a finite such orbit, i.e.
exclude ∞.
Towards the end of the last chapter we studied what types of Sullivan domains can occur and we want
to begin this chapter by continuing this discussion for polynomials. For these, one type is automatically
excluded.

Proposition 2.37. The Sullivan domains of a polynomial are never Herman rings.

Proof. Suppose there was a Herman ring H. Unraveling the definition yields a function φ mapping H
to an annulus such that φ ◦ p ◦ φ−1 is a rotation on that annulus. Pick any circle inside the annulus.
Then the image of that circle under φ−1 is a p-invariant closed Jordan curve γ inside H. Let U denote
the connected component of C \ γ not containing ∞. Then U is open and simply connected. By the
maximum principle, for any n ≥ 0:

sup
z∈U
|pn(z)| = sup

z∈∂U
|pn(z)| = sup

z∈γ
|pn(z)| ≤ sup

z∈γ
|z| <∞

Hence, each map pn is uniformly bounded on U . But since U ∩ J 6= ∅, it follows from Montel’s theorem
that

⋃
n≥0 p

n(U) leaves out at most two points, a contradiction.

On the other hand, we already noted that we do not rely on the study of the Sullivan domains
themselves but can instead investigate the behavior of the critical orbits. For polynomials, this approach
proves even more useful. Recall that the Julia set is exactly the boundary of W s(∞) (see corollary 2.13).
Now, we can give sufficient and necessary conditions for the Julia set to be connected. This theorem
is one of the main results in polynomial dynamics. To make sense of the first condition recall that any
non-constant holomorphic map (on any Riemann surface) can be conjugated locally to z → zk for some
k ≥ 1 (see, for example, [11, p. 10]).
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Theorem 2.38. The following are equivalent:
1. The map conjugating p to z → zd near ∞ extends to W s(∞).
2. W s(∞) is simply connected.
3. J is connected.
4. The orbit of any critical point is bounded.

In order to prove it we need to develop a technique for extending the conjugation near ∞. Let φ
be the map conjugating p with z → zd in a neighborhood U of ∞. It satisfies the functional equation
φ(p(z)) = φ(z)d. An explicit formula2 is given by

φ(z) = lim
n→∞

(pn(z))d
−n

If we set G(z) = log |φ(z)|, then the functional equation for φ translates to G(p(z)) = d ·G(z). This
allows us to extend G to a map on all of W s(∞) by setting G(z) = 1

dnG(pn(z)), where n is so large that

pn(z) ∈ U . With G(z) = 0 on K = C\W s(∞) it is now defined on all of C. It is the Green’s function3 of
W s(∞). φ is sometimes called the Boettcher coordinate.

Now take r large such that {z | G(z) > r} ⊂ U . Observing p({G(z) > r}) ⊂ {G(z) > d · r}, we can
extend φ(z) = φ(p(z))1/d to {G(z) > r/d} provided {G(z) > r} contains no critical value of p (as the
absence of critical values allows us to pick a well-defined root).
We are ready to prove the last theorem.

Proof of Theorem 2.38. 4⇒ 1: As discussed in the preparation of this proof, we can extend the conjugacy
φ as long as {z | G(z) > r/d} contains no critical points. In particular, if the orbit of any critical point
is bounded, we can extend φ to all of W s(∞).
1 ⇒ 2: The image of φ is {|z| > 1} and so, W s(∞) is homeomorphic to a disk.
2 ⇐⇒ 3: For a polynomial, W s(∞) always is connected. Moreover, an open set is simply connected if
and only if its boundary is connected, see [2, p. 343].
3 ⇒ 4: Suppose there is a critical point with unbounded orbit. Then φ can only be extended up to some
level curve {G = r} of Green’s function that contains a critical point of p. Near p φ(z) takes different
values depending on the direction from which z approaches p. The directions correspond to cusps formed
by the level line {G = r} (see figure 1). In particular, the set {G < r} is encompassed by at least two
closed Jordan curves. Each of these curves encircles a subset of J for if one did not, then this curve
would enclose a subset of W s(∞) on which G is harmonic, and by the maximum/minimum principle for
harmonic functions G would be constant on this subset. But then G would be constant in all of {G > r},
a contradiction. Each Jordan curve encircling a subset of J contradicts connectedness of J .

As depicted in figure 1, under a slightly stronger hypothesis we can say more about the disconnect-
edness of the Julia set in the part “3 ⇒ 4”.

Theorem 2.39. If the orbit of any critical point is unbounded, then J is totally disconnected.

2Note that we can write

lim
n→∞

(pn(z))d
−n

= z ·
∏
n≥1

(
pn(z)

pn−1(z)d
)d
−n

and this infinite product converges because∑
n≥1

d−n(log(pn(z))− log(pn−1(z)d))

converges uniformly and absolutely.
3For an open set U ⊂ C, the Green’s function is G : C → [0,∞) such that G is harmonic in U , vanishes outside U , and

G(z)− log(|z|) is bounded near ∞.
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Figure 1: Level curves of Green’s function with J totally disconnected, [5, p. 66].

Proof. By hypothesis we may take a small closed neighborhoodG ⊂W s(∞) of∞ such that J ⊂ D = C\G
and p(G) ⊂ interior(G). Pick N large so that any critical point gets mapped into the interior of G under
pN . Then, pn has no critical point in p−n(D) for any n ≥ N and therefore no critical value in D. In
particular, by corollary 2.20, given any z ∈ J there is an inverse map of pn defined on D sending pn(z) ∈ J
to z, denoted by in. As in maps D into C \G, (in)n≥N is a bounded, hence normal family.
It follows from remark 2.12 that for any w ∈ D ∩ F that is not an exceptional point, in(w) has an
accumulation point in J . As there are at most two exceptional points, there exists a limit function of
(in)n≥N that maps D∩F into J . To see this, we can consider a diagonal argument on a dense countable
subset of D ∩W s(∞) and use normality. Note that by invariance of J , all of D is mapped into J by a
limit function.
By corollary 2.10, J has empty interior and hence, the above limit function must be constant as holomor-
phic functions are always open. Thus, the diameter of in(D) tends to 0 as n→∞. Since ∂D is disjoint
from J and J is completely invariant, each in(∂D) is also disjoint from J . Thus, in(∂D) separates the
subset of J containing z and the subset of J that lies outside in(D). That the diameter of in(D) tends
to 0 shows that {z} =

⋂
n≥0 in(D) must be a connected component.

It sometimes is convenient to study the so-called filled-in Julia set. It is usually denoted by K and is
simply given by C \W s(∞), i.e. consists of the Julia set and all the finite components of the Fatou set.

Remark 2.40. With an argument as in corollary 2.32, we see that under the hypothesis of the last
theorem, the Fatou sets consists only of W s(∞) (there cannot be any other (super-)attractive periodic
points as all the critical orbits enter the basin of ∞). Hence, K and J coincide and the filled-in Julia set
is totally disconnected, too.

There is an alternative proof of the last theorem, which considers inverse images of annuli around ∞,
found in [3, p. 124–126]. The alternative proof has the advantage that we get the following result on the
dynamics on the Julia set for free.

Theorem 2.41. If the orbit of any critical point is unbounded, then p admits chaotic behavior on its
Julia set.

Hence, if the critical orbits are unbounded, then the dynamics on the Julia set are as exotic as they
can get.
Next, we will investigate a certain class of polynomials for which the theorems 2.38 and 2.39 convey a
strong consequence. Let pc denote the polynomial zd + c. These polynomials are particularly important
in the case d = 2. There, any polynomial can be conjugated by an affine map to one of the form z2 + c.
On the other hand, any two such pc1 and pc2 cannot be conjugated unless c1 = c2. Thus, the {pc}c∈C
represent exactly the equivalence classes of polynomial dynamical systems of degree 2 under analytic
conjugation (and also other notions of conjugacies of dynamical systems). Hence, it suffices to study
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these systems in order to classify any possible dynamics in degree 2. For d ≥ 3 this is not true. However,
since most of the proofs do not differ for larger d, we usually consider any d ≥ 2 for generality. The form
zd + c has the following nice effect. The only critical points of pc are 0 and ∞. With the theorems 2.38
and 2.39 we discover the following dichotomy.

Corollary 2.42. The Julia set is either connected or totally disconnected. Connectedness corresponds
to 0 /∈W s(∞) and total disconnectedness to 0 ∈W s(∞).

In fact, we are free to study either one of the Julia or the filled-in Julia set as the dichotomy transfers
to K.

Proposition 2.43. The filled-in Julia set K is connected if and only if the Julia set J is. The same is
true for total disconnectedness.

Proof. To prove the first statement, we use the following result, see for instance [6, p. 202]. An open
connected subset of C is simply connected if and only if its complement is connected. With theorem 2.38
we conclude that J is connected if and only if W s(∞) is simply connected if and only if K is connected.
Secondly, if J is totally disconnected, then by theorem 2.38 together with corollary 2.32, we see that the
Fatou set has W s(∞) as its only component, i.e. K = J .

This dichotomy motivates the definition of the Mandelbrot set.
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3 The Mandelbrot Set M
Let pc(z) = zd + c. By corollary 2.42 the Julia set of pc either is connected or totally disconnected. We
can ask ourselves which parameters c correspond to which case. To investigate this question we introduce
the connectedness locus, commonly known under the name Mandelbrot set.

Definition 3.1. The Mandelbrot set is

M = {c | pc has a connected Julia set}

If d ≥ 3, it is usually called Multibrot set. However, we will always refer to it as the Mandelbrot set.
As it turns out, M does not inherit a simple structure and the above question really is interesting.
By theorem 2.38 we can characterize M alternatively as the set {c | (pnc (0))n≥0 is bounded}. Instead of
requiring finiteness we can give a sharp bound for (pnc (0))n≥0.

Proposition 3.2.

M = {c | ∀n ≥ 0: |pnc (0)| ≤ 2}

Consequently, M is a closed subset of the disk of radius two.

Proof. We first show that if c ∈ M, then |c| ≤ 2. Indeed, if |c| = 2 + δ > 2, then by induction
|pnc (0)| ≥ 2 + 2n−1δ :

|pn+1
c (0)| ≥ |pnc (0)|d − |c| ≥ (2 + 2n−1δ)d − (2 + δ) ≥ (2 + 2n−1δ)2 − (2 + δ) ≥ 2 + 2nδ

Hence, (pnc (0))n≥0 is unbounded and c /∈ M. Next, suppose c ∈ M but |pnc (0)| = 2 + δ > 2 for some
n ≥ 1. Using |c| ≤ 2 we can prove by induction |pn+k

c (0)| ≥ 2 + 4kδ :

|pn+k+1
c (0)| ≥ |pn+k

c (0)|d − |c| ≥ (2 + 4kδ)d − |c| ≥ (2 + 4kδ)2 − 2 ≥ 2 + 4k+1δ

This contradicts c ∈M.

This allows to write somewhat efficient algorithms for computing images of M. Namely, for a fine-
mesh lattice of sample parameter points c in the disk of radius two one can compute the first, say 1000,
iterates pnc (0) and check whether they exceed the value two. But this only yields a rough approximation.
Since an analytical approach to when this bound holds is difficult we need different tools to study M.
One of the topological properties usually studied first is connectedness of a set. An easy result can be
deduced using the maximum principle from complex analysis.

Corollary 3.3. The connected components of the interior of M are simply connected.

Proof. Take a closed Jordan curve γ in one of the components. Let U denote the connected component
of C \γ not containing∞. Then U is open and simply connected. Note that for a fixed n, the map pnc (0)
is a polynomial expression in c and hence, the map c→ pnc (0) is holomorphic. By the maximum principle
and the last proposition, we have for any n ≥ 1:

sup
c∈U
|pnc (0)| = sup

c∈∂U
|pnc (0)| = sup

c∈γ
|pnc (0)| ≤ 2

This shows that U lies in the Mandelbrot set. In particular, it is part of the connected component in
which we picked γ. Therefore, we can contract γ along U , proving that it must be nullhomotopic.
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While the interior of M has infinitely many connected components, which we will become clear later
in theorem 3.5, we get a connected set if we add the boundary. To prove connectedness ofM, we continue
the discussion of Green’s function of W s(∞) for the polynomials pc.
Let φc be the map conjugating pc with z → zd in a neighborhood near∞ and set Gc(z) = log |φc(z)|. As
in the last chapter, extend Gc to a map on all of C and extend φc as long as {z | G(z) > r} contains no
critical values of pc. In this special case, 0 is the only finite critical point. Thus we can extend φc to the
set {z | Gc(z) > Gc(0)}. Note that Gc(z) depends continuously on c for any fixed z. Hence, Gc(c) → 0
as c→M because if c ∈M, then (pnc (c))n≥0 is bounded and

Gc(z) = lim
n→0

1

dn
log(|pnc (z)|) = 0

If Gc(0) > 0 (or, equivalently c /∈M), then

Gc(c) = Gc(pc(0)) = d ·Gc(0) > Gc(0)

tells us that φc is defined at the point c. Hence,

Φ: c→ φc(c) = lim
n→∞

(pnc (c))d
−n

is a well-defined holomorphic map on C \M. From the observation Gc(c)→ 0 as c→M it follows that
Φ is proper as a map into C \D, where D denotes the unit disk. As a proper, hence closed holomorphic
map, Φ maps C \M surjectively onto C \D. We can use the argument principle

#Φ−1(w) =
1

2πi

∫
Γ

Φ′(z)

Φ(z)− w
dz

where Γ is a path encompassing Φ−1(w), to see that Φ also is injective. Indeed, the right hand side is
continuous in w and the left hand side takes values in the natural numbers. Therefore, the right hand
side is locally constant, hence constant ≡ Φ−1(∞) = 1 on the connected set C \D. It follows that

Φ: C \M → C \D

is a holomorphic diffeomorphism. We have proved the following result.

Theorem 3.4. M is connected and full (i.e. C \M is connected).

Proof. We showed above that C\M is diffeomorphic to C\D, hence it is connected and simply connected.
Moreover, an open connected subset of C is simply connected if and only if its complement is connected.

Now that we established connectedness, we focus our attention on the components of the interior of
M. Surprisingly, many of those are characterized by a single property.

Theorem 3.5. If pc0 has a finite attracting periodic orbit of length m, then c0 belongs to the interior of
M. Moreover, the connected component of the interior of M around c contains only points c′ for which
pc′ has an attractive periodic orbit of the same length m. The orbit depends analytically on c′.

Proof. Let z(c0) be an attracting periodic point for pc0 of period m. Consider the map

Q : C× C→ C, Q(c, z) = pmc (z)− z

It satisfies Q(c0, z(c0)) = 0 and as a polynomial expression in both z and c, it is holomorphic. Since

(
∂

∂z
Q)(c0, z(c0)) =

∏
0≤j≤m−1

p′c0(pjc0(z(c0)))− 1 = λ(c0)− 1 6= 0
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where λ(c0) is the eigenvalue of the orbit of z(c0), we can apply the Implicit Function Theorem. The
latter yields open neighborhoods U of c0 and V of z(c0) and a map z : U → V such that Q(z(c), c) = 0
on U . As Q is holomorphic, so is z.4 The last equation reads pmc (z(c)) = z(c), i.e. z(c) is a periodic point
for pc of period m. For c close to the original point, z(c) is attractive for pc. This proves that c0 is an
interior point of M.
Let H denote the connected component around c0. By proposition 3.2, the family fk(c) = pkmc (0) is
bounded, hence normal on H. Let f denote a limit function of (fk)k≥1. By attractiveness, f takes value
z(c) in a neighborhood of c0, and therefore solves Q(f(c), c) = 0 in that neighborhood. By the identity
principle, this equation holds on all of H, thus providing periodic points f(c) for every parameter c ∈ H
of period some multiple of m. However, since H is connected, each of these periodic points actually
has period m. If one of the f(c) was a repelling periodic point, then the sequence fk(c) could not
have converged to that point unless it was eventually constant to f(c). Such a c then is a root of
pmc (pkmc (0)) − pkmc (0) (viewed as a polynomial with variable c) for some k. Hence, there are at most
countably many, but since the eigenvalue λ(c) of the periodic orbit depends analytically on c, there are,
in fact, none. This gives a universal bound for the eigenvalue |λ(f(c))| ≤ 1 on H. But as a holomorphic
map, λ is open. We conclude |λ(f(c))| < 1 on H, i.e. every periodic orbit is attractive as desired.

Define

Hn = {c | pc has an attractive orbit of period n}

Since any bounded (super-) attractive Sullivan domain contains the tail of Orb+(0) we see that pc cannot
have two of those. Consequently, Hn ∩Hm = ∅ whenever n 6= m. The last theorem immediately implies
that each Hn is a union of connected components of the interior of the Mandelbrot set. In the case d = 2
the set H1 is the main body of M and we know its structure very well.

Corollary 3.6. If d = 2, then H1 is a cardioid (in particular connected). Its boundary is contained in
∂M.

Proof. The parameter c is in H1 if and only if pc has an attractive fixed point. The two fixed points are

z±c =
(1± (1− 4c)1/2)

2

and each has eigenvalue λ(c) = 2z±c . Hence, we can rewrite

H1 = {c | |λ(c)| < 1} = {λ/2− λ2/4 | |λ| < 1}

This quadratic equation describes a cardioid, proving the first statement. Being connected, it follows
from the last theorem that H1 is exactly a connected component, thus implying the second statement.

Recall that pc is expanding on its Julia set if and only if J ∩ Orb+(0) = ∅ (cf. theorem 2.34). From
the definition of the Sullivan domains, we see that this never is the case if a parabolic domain or a Siegel
disk exist (remember that Herman rings do not exist at all). Thus, pc is expanding on its Julia set at
most and even exactly if there is an attractive or a superattractive domain. This motivates the following
definition.

4Analyticity in the Implicit Function Theorem follows from analyticity in the Inverse Function Theorem. That the
inverse function is analytic follows from the argument principle, with which we can find a power series of the inverse map.
Namely, if f has non-vanishing derivative on the set {|w| ≤ R}, then its inverse near z0 is

g(z) =
∞∑
n=0

( 1

2πi

∫
|w|=R

w
f ′(w)

(f(w)− z0)n+1
dw
)

(z − z0)n
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Definition 3.7. A connected component of one of the Hn is called a hyperbolic component of M. The
polynomial pc is called hyperbolic if c lies in a hyperbolic component of M.

Remark 3.8. Since W s(∞) is a superattractive domain, pc is expanding on its Julia set if 0 ∈ W s(∞)
and thus, pc should also be called hyperbolic if c /∈ M. However, in this framework we are mainly
interested in the other case, and for simplicity we neglect calling pc hyperbolic if c /∈M.

The main result concerning hyperbolic components is that for degree two each one is conformally
equivalent to the unit disk. Thus, the interior ofM actually behaves rather nicely. We will see later that
it is the boundary that is very hard to get a hold on. The next result is due to Douady in degree two.
A proof for this case can be found in [21, p. 29] or [5, p. 134]. The statement for higher degrees is in [9,
p. 26].

Theorem 3.9. If d = 2, any hyperbolic component H is conformally equivalent to the unit disk. The
equivalence is given by

φ : H → D, c→ λc

where λc is the eigenvalue of the attractive orbit of pc. Moreover, the map extends continuously to ∂H.
If d ≥ 3, the map φ is not a conformal equivalence but a covering map of degree d − 1 ramified over 0
and it also extends continuously to the boundary.

Hyperbolicity is closely linked to local connectedness5 of the (filled-in) Julia set of pc. But it can
also be used to study local connectedness of the Mandelbrot set. The latter is what we are interested
in. For the former consult, for example, [7]. Local connectedness of M (or, more precisely, ∂M) is one
of the primary questions of interest in complex dynamics. Up to date it remains an open problem. The
following is widely accepted and the object of many studies.

Conjecture 3.10 (MLC). The Mandelbrot set is locally connected.

As a topological property local connectedness can be quite difficult to prove. However, the following
strong theorem of Carathéodory will allow us to reformulate the problem. As a reference, the reader may
consult [19, p. 169] or [7, p. 23].

Theorem 3.11 (Carathéodory). Suppose G ⊂ C is a simply connected domain, which is conformally
equivalent to the unit disk D. Then the boundary of G is locally connected if and only if the conformal
equivalence extends to a continuous map G→ D.

Suppose now d = 2. With theorem 3.9 we see that each hyperbolic component has a locally connected
boundary. Thus, the next conjecture is stronger than (MLC).

Conjecture 3.12 (HIM). The hyperbolic components constitute all of the interior of M.

In fact, (MLC) and (HIM) are equivalent. To show (MLC) ⇒ (HIM) one needs tools related to the
conformal equivalence Φ: C \ M → C \ D, which we discussed earlier. For further reading see [7] and
[21]. Furthermore, note that this equivalence increases the interest in the conjecture (MLC) even more.
Because if (HIM) is true, then this says that the hyperbolic systems are dense in all the polynomial
dynamical systems of degree two. In fact, one can then use similar techniques to get better hyperbolicity
results in higher degrees, as well.

Up to non-hyperbolic components that may or may not exist we have completely classified the com-
ponents of the interior. Let us now investigate the boundary of M. For this we turn back to the general
case d ≥ 2. We first show that there are no parts ofM that consist of a nowhere dense branch of points.
More precisely, we show that the interior of the Mandelbrot set is dense.

5G ⊂ C is locally connected at z ∈ G if for any open set z ∈ V ⊂ G there exists a connected open set U with z ∈ U ⊂ V .
G is locally connected if it is locally connected at every point.
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Proposition 3.13. ∂M is contained in the closure of {c | pc has a superattractive periodic orbit}. Con-
sequently, M has dense interior.

Proof. Let U be an open set with U ∩ ∂M 6= ∅ and 0 /∈ U . Take a branch of z1/d defined on all of U .
Suppose for contradiction U does not contain any parameter c for which 0 is periodic under pc. Then
pnc (0) 6= (−c)1/d for all n ≥ 0 and all c ∈ U since otherwise pn+1

c (0) = 0. Set

fn(c) =
pnc (0)

(−c)1/d

and observe that the family (fn)n≥0 omits 0, 1,∞ and is therefore normal on U . But (fn)n≥0 cannot be
equicontinuous since U contains points for which the sequence (pnc (0))n≥0 is bounded as well as points
for which it is unbounded, a contradiction. That the interior is dense follows from theorem 3.5.

In the remaining of the chapter we provide a short exhibition of further properties of the boundary.
The results are taken from [7], [21] and [23].
As a consequence of theorem 3.9 each hyperbolic component H contains a unique point φ−1(0) that
corresponds to a superattractive periodic orbit. We call it the center of H. More precisely, the parameters
c for which pc has a superattractive periodic orbit are in a 1-1 correspondence with the center of hyperbolic
components. The last proposition tells us that near any boundary point there must be smaller and smaller
hyperbolic components scattered around that point.
Similarly, φ−1(1) consists of d points on the boundary of H. It can be shown that these d points
correspond to systems pc that have a parabolic periodic point. In addition, any parameter c for which pc
has a parabolic periodic point is such a boundary point of some hyperbolic component. Moreover, unless
the period of the hyperbolic component is one (in the sense of the definition of the sets Hn), then the
parabolic orbit from exactly one of the parameters in φ−1(1) has eigenvalue 1 and we call this parameter
the root of H. Whenever boundaries of two hyperbolic components intersect, the intersection is a single
point and it is the root of one of the components. Likewise, a root always lies at an intersection point.
Most importantly, the following statement holds.

Proposition 3.14. The roots of hyperbolic components are dense in ∂M.

That at every root there is a new hyperbolic component attached confirms the above observation that
smaller and smaller hyperbolic components scatter the boundary.
Another important class of boundary points are the parameters c for which 0 is strictly preperiodic for
pc. These are called Misiurewicz points. Such a point is a root of pn+k

c (0)−pkc (0) (viewed as a polynomial
with variable c) for some n, k ∈ N. Hence, there are only countably many. As for roots, the following
holds.

Proposition 3.15. The Misiurewicz points are dense in ∂M.

The study of the various types of parameters in ∂M is closely linked to the study of the conjectures
(MLC) and (HIM). But we can also ask ourselves what the boundary looks like as a geometric object. The
last two chapters are dedicated to this question. We will see in two different ways that the Mandelbrot
set is self-similar, thus confirming our intuitive perception.
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4 An Application of Polynomial-like Maps

In this chapter we introduce the notion of polynomial-like maps, which are a powerful tool for studying
dynamics of polynomials. The advantage will be that we can make small perturbations of a polynomial
in the space of holomorphic functions instead of just the space of polynomials. This allows for more
flexibility if we want to enforce a certain condition on the perturbation. We will first give an example
of the strength of polynomials and give a sharp bound on the number of non-repelling periodic orbits a
polynomial can have. Then we use the newly developed tools to study the self-similarity of the Mandelbrot
set. This chapter is based on the work by Douady and Hubbard in [8].

Definition 4.1. A polynomial-like map of degree d is a triple (U,U ′, f) where U and U ′ are open subsets
of C biholomorphic to disks with U ′ relatively compact in U , and f : U ′ → U is a proper analytic map of
degree d.

Remark 4.2. Note that we can use relative compactness of U ′ to copy the proof of lemma 2.18, which
said that R : C→ C is a branched covering map, almost word for word. Hence, a polynomial-like map is
a branched covering map, as well, and in the above definition the degree is a well-defined notion.

The notion of polynomial-like maps is (as the name suggests) closely linked to polynomials, as seen
further below. We can introduce similar objects of interest.

Definition 4.3. The set Kf =
⋂
n≥0

f−n(U ′) is called filled-in Julia set and its boundary the Julia set.

Lemma 4.4. The filled-in Julia set is compact.

Proof. Suppose there was a sequence (zn)n≥0 ⊂ Kf with a limit point z outside of Kf . Then there is
some iterate fN (z) /∈ U ′ with N ≥ 1. Since fN (zn) converges to fN (z) but also stays in U ′, it must
converge to the boundary of U ′. Now (fN (zn))n≥0 is a sequence in U ′ with no convergent subsequence in
U ′. As f is proper, it maps such a sequence to a sequence with no convergent subsequence in U . Thus,
fN+1(zn) converges to the boundary of U . However, it is also a sequence in U ′ as zn ∈ Kf , and we see
that U ′ cannot be relatively compact in U , a contradiction.

If f is the restriction of a polynomial p to U ′, then this definition basically agrees with the one that
has already been introduced. Indeed, z ∈ Kf implies that Orb+(z) is bounded since it never leaves U ′,
i.e. z /∈ W s(∞). Thus, Kf is a subset of the filled-in Julia set K(p). However, U ′ could be too small to
contain the entire filled-in Julia set K(p), which is why, in general, the reverse inclusion K(p) ⊂ Kf does
not hold. In fact, Kf consists exactly of those connected components of K(p) whose iterates are always
a subset of U ′. In this example, the Julia set also is a subset of the usual Julia set.
Now suppose f is any polynomial-like map, not necessarily the restriction of a polynomial. Note that Kf

could be empty! An example of this is a polynomial restricted to a proper subset of one of the components
of its Fatou set. To circumvent this problem, we think of U ′ to be usually “quite large”. With Kf being
non-empty, the filled-in Julia set satisfies the same relation to critical points as it did for polynomials.

Proposition 4.5. Kf is connected if and only if all the critical points belong to Kf .

We base our proof on [20].

Proof. We claim that the connected components of f−n(U ′) are all biholomorphic to disks. Suppose for
now the claim is true. Since fn : f−n(U ′) → U ′ is analytic and proper, it is a branched covering map6.

6This follows just as in lemma 2.18. Note that relative compactness of U ′ is enough to substitute compactness of C since
we do not need an accumulation point to be in the domain of definition to apply the identity principle.
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Applying the Riemann-Hurwitz formula to this covering map yields (in the next few lines χ is the Euler
characteristic, not the straightening map)∑

p∈f−n(U ′)

(ep − 1) = d · χ(U ′)− χ(f−n(U ′)) = d− χ(f−n(U ′))

Note that applying the Riemann-Hurwitz formula to the covering map f : U ′ → U also yields∑
p∈U ′

(ep − 1) = d · χ(U)− χ(U ′) = d− 1

Thus, we get

χ(f−n(U ′)) = 1 ⇐⇒
∑

p∈f−n(U ′)

(ep − 1) =
∑
p∈U ′

(ep − 1)

i.e. f−n(U ′) consists of a single component biholomorphic to a disk if and only if all the critical points
belong to f−n(U ′). In particular, if all critical points belong to Kf =

⋂
n≥0 f

−n(U ′), then Kf is the
non-empty intersection of disks and is itself connected. Conversely, if not all the critical points belong to
Kf , then f−n(U ′) has two or more components for each n ≥ N and some N . Since Kf contains a point
in each of these components, it must be disconnected.
Let us now prove the claim. Suppose first that ∂U ′ does not meet any critical orbit. In particular, ∂U ′

contains no critical values of any fn, n ≥ 1, and since the absence of critical values corresponds to local
injectivity, the boundary of the set f−n(U ′) consists of a collection of closed Jordan curves. Suppose
there was a component V that it not simply connected. Then the set C \ V has a bounded component,
denoted W . Again, since fn is analytic and proper, it maps ∂W into ∂U ′ and would map W onto C \U ′
if it was well-defined on W . Since this cannot happen, there is a point z ∈ W such that the orbit of z
leaves U ′ before time n, i.e. fk(z) ∈ U \ U ′ for some k < n. But then we find a small disk W2 around z
with W ⊂ C \ f−k(U ′) and we can repeat the process. As the power of the iterate decays each time we
make this argument, we reach k = 0 eventually, yielding a contradiction.
Suppose now ∂U ′ meets a critical orbit. Since Kf is compact, it is a positive distance away from ∂U ′.
Pick Kf ⊂ U ′2 ⊂ U ′ such that ∂U ′2 avoids any critical orbit. We then replace the polynomial-like map
(f, U, U ′) with (f, U, U ′2). The filled-in Julia set of the new map clearly is the same as before.

Similarly, other results from the first chapter can be adapted just alike.

Corollary 4.6. For any attractive periodic point p, there is a critical point in its immediate attractive
basin.

Proof. In the proof of proposition 2.22 we only made use of properties of branched coverings and did not
need that R was defined on all of C.

Corollary 4.7. A polynomial-like map of degree d has at most d− 1 attractive periodic orbits.

To state the first important theorem in the theory of polynomial-like maps we need the following
notion of equivalence.

Definition 4.8. Two polynomial-like maps f and g are quasi-conformally equivalent if there exists a
homeomorphism h from a neighborhood of Kf to a neighborhood of Kg such that h ◦ f = g ◦ h, and h is
quasi-conformal. If, in addition, ∂h = 0 on Kf , then f and g are said to be hybrid equivalent.
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Remark 4.9. The del-bar operator ∂ = ∂
∂z dz needs to be understood in a distributional sense. Namely,

∂h = 0 on Kf means that ∫
V

h · ( ∂
∂z
φ) dz = 0

for any test function φ with compact support in Kf , where V denotes the neighborhood of Kf from the
definition above. The existence of ∂ as a distribution follows from h being quasi-conformal. By Weyl’s
lemma, h is holomorphic on Kf up to a set of measure zero. The Julia set ∂Kf could have positive
measure, but examples for that are not known. Thus, in every known case, ∂h = 0 reduces to saying that
h is holomorphic on the interior of Kf .

The next theorem justifies the name polynomial-like and also why these objects are useful for us.
It is an application of the measurable Riemann mapping theorem. The full proof can be found in [8,
p. 296-303] and proofs of the first statement in [5, p. 99-100] or [3, p. 134-135].

Theorem 4.10. Every polynomial-like map of degree d is hybrid equivalent to a polynomial of degree d.
Moreover, if Kf is connected, then the polynomial is unique up to conjugation with an affine map.

Thus, a polynomial-like map has the same dynamics as a polynomial near its filled-in Julia set. An
application is a sharpening of the count of non-repelling periodic orbits for a polynomial.

Proposition 4.11. If p is a polynomial of degree d, then it has at most d − 1 non-repelling periodic
orbits.

We give the proof found in [5, p. 100] with a minor modification.

Proof. Let N denote the set of non-repelling periodic points of p. Since N is finite as of proposition 2.24,
we can construct a polynomial q that vanishes on N . Furthermore, by taking a polynomial of higher
degree we can pick q such that

m∑
j=1

Re(
q′(zj)

p′(zj)
) < 0

for every neutral periodic orbit {z1, ..., zm}. Define f = p + εq for ε > 0. Since q vanishes on N , every
non-repelling periodic orbit of p is a periodic orbit for f . If ε is small enough, any attractive orbit for p is
also attractive for f . Moreover, by shrinking ε even further, any neutral orbit of p becomes an attractive
orbit for f , which we see as follows: Let {z1, ..., zm} denote a neutral orbit of p, λ its eigenvalue with
respect to p and µ its eigenvalue for f . Using

m∑
j=1

log |p′(zj)| = log

m∏
j=1

|p′(zj)| = log |λ| = 0

and

log |1 + ε
q′(zj)

p′(zj)
|2 = log(1 + 2εRe(

q′(zj)

p′(zj)
) +O(ε2)) = εRe(

q′(zj)

p′(zj)
) +O(ε2)

we get

2 ·
m∑
j=1

log |f ′(zj)| = 2 ·
m∑
j=1

log |p′(zj)|+
m∑
j=1

log |1 + ε · q
′(zj)

p′(zj)
|2 = ε ·

m∑
j=1

Re(
q′(zj)

p′(zj)
) +O(ε2) < 0
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meaning

|µ|2 = exp(2 ·
m∑
j=1

log |f ′(zj)|) < 1

Take U ⊂ C large (and connected and simply connected) such that U ′ = f−1(U) encompasses all finite
critical points of p. Since ∞ is an attractive fixed point of f , when thought of as a map on the Riemann
sphere, we can pick U so large that U ′ ⊂ U . We claim that f is a polynomial-like map of the same degree
d. Indeed, if z ∈ U has inverse images z1, . . . , zn under p, then it will have inverse images w1, . . . , wn
close to the zi under f because ε was chosen to be very small. On the other hand, it cannot have more
inverse images under f by the same argument. We conclude using corollary 4.7.

This proof is a good example of the strength of polynomial-like maps. Before, we could only turn
half of the neutral orbits into attractive ones because the perturbed map needed to be a polynomial (see
proposition 2.24).

This short exhibition concludes our motivation for polynomial-like maps. We proceed to the main
interest of this chapter. From now on we restrict our attention to the case of degree two, i.e. every
polynomial-like map in consideration will be of degree two. The goal is to give one (of several possible)
explanations of the self-similarity of M. Namely, that if one zooms into a computer generated picture
of M, it will look like before zooming in. More specifically, we will show that these small subsets, which
we see by zooming in, can be mapped quasi-conformally onto M. Since a quasi-conformal map does not
distort its image very much in an intuitive sense, this explains the small copies of M.
Our approach is to first mimicM with a similar set that arises from a family of certain holomorphic maps
(just likeM). Then, under certain hypothesis, we will naturally get a quasi-conformal map between two
mimicries. Lastly, in a special case, one of the two mimicries will be such a subset of M and the second
one will be M itself. To construct the mimicries we need the notion of an analytic family.

Definition 4.12. Let Λ be a complex manifold and F = (fλ : U ′λ → Uλ)λ∈Λ be a family of polynomial-
like maps. Set U = {(λ, z) | z ∈ Uλ}, U ′ = {(λ, z) | z ∈ U ′λ} and f(λ, z) = (λ, fλ(z)). We say F is an
analytic family if

1. U and U ′ are homeomorphic over Λ to Λ×D,
2. The projection from the closure of U ′ in U to Λ is proper and
3. f : U ′ → U is analytic and proper.

In our framework we will always deal with families parametrized by an open subset Λ ⊂ C homeomor-
phic to a disk. Given an analytic family of polynomial-like maps of degree two, we naturally get a map
χ : Λ→ C specified by the property that fλ is hybrid equivalent to z2 +χ(λ). χ is called the straightening
map. A priori, it depends on a choice. Fortunately, theorem 4.10 enables us to circumvent this problem.

Corollary 4.13. Suppose c1, c2 ∈M. If pc1 and pc2 are hybrid equivalent, then c1 = c2.

Proof. By hypothesis pc1 is hybrid equivalent to both pc2 and itself. By the second part of the theorem,
pc1 and pc2 are conjugate by an affine map. The only affine map conjugating two polynomials of this
form is the identity.

Define MF = {λ | Kfλ is connected}. This set is the mimicry of M mentioned earlier. A posteriori,
this corollary shows that the straightening map is independent of a choice at least inside MF . We can
say something about the regularity of χ. Namely, it is continuous on all of Λ (see [8, p. 308]). The proof
proceeds as follows.
We first need to introduce a new notion for periodic points. Given an analytic family and a periodic point
p of fλ0

with eigenvalue in the unit circle minus the point 1, each map close to fλ0
has a periodic point
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of the same period as p. We say p is persistently non-hyperbolic if each of the periodic points of the close
maps has eigenvalue of absolute value one, i.e. we cannot make it hyperbolic by small perturbations.7

Note that the eigenvalue of the close periodic points must actually be exactly the same as the one of p
by analytic dependence of the eigenvalue. The set H(F ) denotes the set of parameters λ that have an
open neighborhood in Λ such that for every λ′ in that neighborhood, fλ′ has a hyperbolic or persistently
non-hyperbolic periodic point.8 Mañé, Sad and Sullivan proved that H(F ) is open and dense in Λ and
that for two sufficiently close parameters λ1, λ2 ∈ H(F ), the Julia sets and hence, filled-in Julia sets of
fλ1 and fλ2 are homeomorphic (see [17, p. 199]).9 It follows that a connected component of H(F ) either
belongs to the interior of MF or the complement of MF . We can say even more.

Proposition 4.14. H(F ) = Λ \ ∂MF .

We closely follow [8, p. 309].

Proof. We already know one inclusion and only need to prove Λ \ ∂MF ⊂ H(F ). We will first show that
the interior of MF is a subset of H(F ) and then that Λ \MF is, too.
Suppose for contradiction there is some λ0 in the interior ofMF but not inH(F ). Unraveling the definition
of H(F ), we find a neighborhood W of λ0 such that each fλ, λ ∈W , has a periodic point z(λ) of period
k and eigenvalue ρ(λ), where z and ρ depend analytically on λ and ρ is non-constant. Furthermore, let
ω(λ) denote the critical point of fλ. Take a sequence λn → λ0 in W such that |ρ(λn)| < 1 for all n. By
corollary 4.6, each ω(λn) belongs to the basin of z(λn). Hence, for each n, there is some 0 ≤ i(n) ≤ k− 1
such that

f
km+i(n)
λn

(ω(λn))→ z(λn) as m→∞

We may pick a subsequence of λn such that i(n) is constant i. Now define

gm(λ) = fkm+i
λ (ω(λ))

Since λ0 was in the interior of MF , we can assume W ⊂ MF by shrinking if necessary. By definition of
MF , ω(λ) belongs to the filled-in Julia set of fλ for λ ∈W . In particular, gm(λ) ∈ U ′λ. Given a compact

set K ⊂ W , the set {(λ, z) | z ∈ U ′λ, λ ∈ K} is compact by the second property in the definition of an
analytic family. Therefore, gm(λ) is bounded on compact sets in W , hence normal on W . If g denotes
any limit function, then g(λn) = z(λn) for every n, and therefore g = z by the identity principle. Thus,
gm(λ) → z(λ) for any λ and not just on a subsequence. However, as a holomorphic function, ρ also
takes values of absolute value strictly greater than one. For those, z(λ) is repelling and gm(λ) could not
converge to it, a contradiction. This concludes the first inclusion.
Now suppose λ ∈ Λ \MF . Then the critical point ω of fλ lies in U ′λ \Kfλ . As in the case of polynomials,
this implies that fλ is expanding on its Julia set ([8, p. 296]). In particular, there are no periodic points
with eigenvalue of absolute value one. This shows the second inclusion and finishes the proof.

Douady and Hubbard used that the area of Kfλ is continuous in H(F ) to show that the straightening
map is continuous in H(F ) ([8, p. 310]). The last step is to prove continuity on ∂MF by approximation
using density of H(F ) ([8, p. 313]). That concludes continuity of χ.
We will mostly be interested in how χ behaves on MF . On the interior of this set the straightening map
even is analytic since it is on H(F ) ([8, p. 313]). Moreover, by restricting to MF we get better topological
properties, as well.

Lemma 4.15. If χ is not constant and MF is compact, then the restriction χ : MF →M is surjective.

7The exact definition differs because it needs to include the case where p has eigenvalue 1. For details see [17, p. 198].
8In the case of polynomials of the form z → zd, the set H(f) is exactly the interior of the Mandelbrot set, i.e. the

parameters with persistently non-hyperbolic periodic points correspond to the non-hyperbolic components.
9Even though [17] does not deal with polynomial-like maps, the proofs proceed analogously.
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Proof. It is shown in [8, p. 326] that χ is topologically holomorphic over M, which, roughly speaking,
means that it is locally a covering map. More precisely, for every p ∈ MF there exists an open neigh-
borhood V of p and an open neighborhood U of χ(p) such that the restriction χ : V → U is proper
and surjective ([8, p. 322]). By compactness, (Vp)p∈MF

has a finite subcover of MF , which we denote by
V1, . . . , Vn. Note that the boundary of

⋃
1≤j≤n Vj lies in Λ \MF . Moreover, as a proper map, χ maps

each ∂V to ∂U . Using χ−1(M) = MF , we see that the boundary of W =
⋃

1≤j≤n Uj is disjoint to M.
The set W must contain all of M since otherwise we could write M as the disjoint union of open sets
M∩W and M∩ C \W , contradicting connectedness of M. Since each χ : V → U was surjective, we
conclude that χ is surjective onto M. Lastly, use the equality χ−1(M) = MF once more.

Remark 4.16. The condition in the last lemma can be visualized using the trivial example. If fλ(z) =
z2 + λ and Λ is some subset of M, then χ is the identity map restricted to Λ, hence not surjective. In
order to satisfy the hypothesis of the lemma, Λ needs to contain all of M and the statement of the lemma
becomes, in fact, trivial.

From now on we will always assume that χ is not constant. Clearly, this is not very restrictive. Note
that as χ is holomorphic on the interior of Mf , we always have χ−1(∂M) ⊂ ∂Mf . Indeed, if there was
a point λ ∈ Mf \ ∂Mf with χ(λ) ∈ ∂M, then for a small open neighborhood U ⊂ Mf \ ∂Mf of λ the
set χ(U) also is open, contradicting χ(Mf ) ⊂ M. Therefore, if Mf is compact and the previous lemma
holds, then χ : MF →M is a branched covering map.

Definition 4.17. We call the family F Mandelbrot-like if Mf is compact and the degree of χ : MF →M
is one, i.e. χ restricts to a homeomorphism MF →M.

The straightening map will become the quasi-conformal map from the mimicry of M into M. To
show quasi-conformality we will use the λ-lemma. In this form it was first stated and proved in [17,
p. 193, 201]. It will also play an important role in the next chapter.

Theorem 4.18 (λ-lemma). Let iλ : X → C, λ ∈ D, where X ⊂ C is any subset and D is a disk centered
at the origin. Suppose each iλ is injective, i0 = idX and that for fixed z ∈ X the map iλ(z) : D → C
depends analytically on λ. Then there is an extension to a family of maps jλ : X → C, λ ∈ D, which is
jointly continuous and such that each jλ is quasi-conformal.

In order to apply it, we extend the notion of an analytic family of maps and pair it with the well known
concept of continuous paths. Let I = [0, 1] be the unit interval and F = (fs,λ : U ′s,λ → Us,λ)s∈I,λ∈Λ be a
family of polynomial-like maps of degree two. We replace U in definition 4.12 by U = {(s, λ, z) | z ∈ Us,λ},
similarly for U ′, and f by f(s, λ, z) = (s, λ, fs,λ(z)). We again require U and U ′ to be homeomorphic
over I × Λ to I × Λ ×D and the projection of the closure of U ′ in U to Λ to be proper. Similarly, f is
supposed to be proper, analytic in (λ, z) and continuous in s. Furthermore, assume that for each s ∈ I
the analytic family Fs = (fs,λ)λ∈Λ is Mandelbrot-like and that there exists a compact set A in Λ such
that for every s we have MFs ⊂ A.

Definition 4.19. If these conditions are satisfied, then F is called a continuous path of Mandelbrot-like
families connecting F0 and F1.

We are ready to invoke quasi-conformality.

Proposition 4.20. Suppose F = (fλ : U ′λ → Uλ)λ∈Λ and G = (gλ : U ′λ → Uλ)λ∈Λ are two Mandelbrot-like
families parametrized by the same Λ. If F and G can be connected by a continuous path of Mandelbrot-like
families, then the homeomorphism χ = χ−1

G ◦ χF : MF →MG is quasi-conformal.

We base our proof on [8, p. 329].
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Proof. We divide the path connecting F and G into finitely many small pieces. Since the composition of
two quasi-conformal maps is again quasi-conformal, it suffices to show the proposition for families F and
G on the same segment. Let (Hs)s∈I denote the path connecting F and G. By definition, there exists a
compact set A in Λ such that for every s we have MHs ⊂ A. Consider the family

Ft = (fλ + t · (gλ − fλ))λ∈Λ′

for t ∈ DR(0) ⊂ C and A ⊂ Λ′ ⊂ Λ. If the segments chosen in the beginning are small enough and R > 1
is small, then MFt ⊂ A still is compact. Thus, each straightening map χFt : MFt → M, associated to
the family Ft, is a branched covering map. Since the degree is locally constant, each χFt is, in fact, a
homeomorphism. Thus, (for appropriate domains) the families Ft are Mandelbrot-like, as well. Define

χt = χ−1
Ft
◦ χF : MF → Λ′

Since χt depends analytically on t, it satisfies the hypothesis of the λ-lemma (after resizing DR(0) to the
unit disk). The λ-lemma tells us that each χt is quasi-conformal, in particular χ1 = χ−1

G ◦ χF is.

We finished constructing mimicries of M and quasi-conformal maps between them. Now we need to
investigate which mimicries are subsets of M. Such arise if the analytic family generating MF is similar
to the family (pc)c∈C from which M itself stems.

Definition 4.21. Let c ∈ M and suppose 0 is a periodic point of period k for pc. We say c is tunable
if there exists a neighborhood Λ of c and a Mandelbrot-like family F = (fλ : U ′λ → Uλ)λ∈Λ such that for
every λ ∈ Λ we have 0 ∈ U ′λ and the map fλ is the restriction of pkλ to U ′λ.

The set MF corresponding to this analytic family is what we are looking for. Let us check that it is
a subset of M.

Lemma 4.22. For F as in the definition of a tunable point, MF ⊂M and ∂MF ⊂ ∂M.

Proof. By definition

Kfλ ⊂ Kpkλ
⊂ K(pkλ) ⊂ K(pλ)

where K(·) is the filled-in Julia set of a polynomial-like map and K(·) is the usual filled-in Julia set of

the map viewed as polynomial on all of C. Hence, if Kfλ is connected, then K(pλ) cannot be totally
disconnected and consequently must be connected. Thus, λ ∈ M. Conversely, if Kfλ is not connected,
then K(pλ) cannot be connected and λ /∈M.

We gathered all the necessary ingredients to prove self-similarity.

Corollary 4.23. Given a tunable point c, there is a small quasi-conformal copy of M at c.

Proof. Define

fs,λ = s · pλ(z) + (1− s) · pkλ(z)

If F denotes the analytic family from the definition of a tunable point, then F = (f0,λ)λ∈Λ. Moreover,
we define G = (pλ)λ∈Λ = (f1,λ)λ∈Λ. We see that (fs,λ : U ′s,λ → Us,λ)s∈I,λ∈Λ is a continuous path of

Mandelbrot-like families for appropriate U ′s,λ and Us,λ. Thus, χ = χ−1
G ◦χF : MF →MG is quasi-conformal

by proposition 4.20. By corollary 4.13, χG is the identity and we conclude that χF is quasi-conformal.
The statement follows from lemma 4.22.

All that is left to do is assert the existence of tunable points. Moreover, since we do not want a single
quasi-conformal copy of M, there hopefully are infinitely many tunable points clustering ∂M. Douady
and Hubbard provided the necessary proof, see [8, p. 332-337].
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Theorem 4.24. Given any Misiurewicz point c, there is sequence of tunable points converging to c.

Since Misiurewicz points are dense in ∂M (see proposition 3.15), we have reached the goal of this
chapter. We showed that regardless of where we close in on the Mandelbrot set, there will be a small
quasi-conformal copy of it. In a sense, this phenomenon resembles self-similarity. However, there are
various definitions of the latter. Often, self-similarity and exhibiting fractal nature are not distinguished.
We will conclude this thesis by proving that ∂M admits that kind of self-similarity, as well.
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5 The Mandelbrot Set as a Fractal

5.1 The Hausdorff Dimension of ∂M
Let us begin this chapter by introducing the Hausdorff dimension from scratch. Roughly speaking, it
measures how fine a cover must be to cover the set most efficiently. Suppose X is any metric space,
A ⊂ X any subset, and s and δ are two positive real numbers. We define

Hδ
s (A) = inf{

∑
U∈U

diam(U)s | U is a cover of A of sets of diameter at most δ}

Clearly, Hδ
s (A) is increasing as δ decreases. By monotonicity, the limit

Hs(A) = lim
δ→0

Hδ
s (A) = sup

δ>0
Hδ
s (A) ∈ [0,∞]

exists.

Lemma 5.1. For each s and δ both Hδ
s and Hs define a measure.

Proof. In both cases we only need to show subadditivity. Suppose A ⊂
⋃
k≥1Ak and ε > 0. For each k

pick a cover Uk of Ak of sets of diameter at most δ with∑
U∈Uk

diam(U)s < Hδ
s (Ak) + 2−kε

Since
⋃
k≥1 Uk is a cover of A we get

Hδ
s (A) ≤

∑
k≥1

Hδ
s (Ak) + ε

This proves that Hδ
s is a measure. From this it follows immediately that Hs is a measure, too.

Hδ
s (A) ≤

∑
k≥1

Hδ
s (Ak) ≤

∑
k≥1

Hs(Ak)

The left-hand side converges to Hs(A).

Lastly, we define the Hausdorff dimension of A to be

dimH(A) = inf{s > 0 | Hs(A) = 0}

That dimH is well-defined follows from the next lemma.

Lemma 5.2. Suppose 0 < t < s <∞. Then
1. Ht(A) <∞⇒ Hs(A) = 0 and
2. Hs(A) > 0⇒ Ht(A) =∞.

Proof. For any cover U of A of sets of diameter at most δ we have

Hδ
s (A) ≤

∑
U∈U

diam(U)s ≤ δs−t ·
∑
U∈U

diam(U)t

Taking the infimum over all covers we get

Hδ
s (A) ≤ δs−tHδ

t (A) ≤ δs−tHt(A)

Taking the limit δ → 0 shows part one. The second part is a consequence of the first.
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Let us proceed by giving a very general upper bound for the Hausdorff dimension.

Proposition 5.3. It holds dimH(Cn) = 2n. Consequently, for any A ⊂ Cn it holds that dimH(A) ≤ 2n.

We follow [26, p. 23].

Proof. The second statement is immediate once we have shown the first since a cover of Cn is also a
cover of A. For the first part we need to show H2n(C) > 0 and Hs(C) = 0 for any s > 2n. We first
show that 0 < H2n(Q) < ∞, where Q = [−1, 1]n denotes the n complex dimensional unit cube. Let zj ,
1 ≤ j ≤ 22n(k+1) denote the points of a 2n dimensional mesh, which is equally distributed with distances
2−k such that Q is contained in the union of cubes of edge length 2−k around each zj . Each small cube
has diameter (2n)1/2 · 2−(k+1). Hence, if k is so large that (2n)1/2 · 2−(k+1) < δ, then

Hδ
2n(Q) ≤ 22n(k+1) · ((2n)1/2 · 2−(k+1))2n = (2n)n

Taking the limit δ → 0 yields H2n(Q) ≤ (2n)n. To show the second inequality, let λ denote the Lebesque
measure and ω2n the Lebesque volume of the n complex dimensional unit ball. If U is a cover of Q, then
it also covers the unit ball and

ω2n ≤
∑
U∈U

λ(U) ≤
∑
U∈U

diam(U)2n · ω2n

Thus, we always have
∑
U∈U diam(U)2n ≥ 1 and can conclude H2n(Q) ≥ 1. By the last lemma we have

Hs(Q) = 0 for any s > 2n. Now cover Cn by countably many cubes. That Hs(C) = 0 for any s > 2n
follows from subadditivity of Hs as a measure. Lastly, H2n(C) ≥ H2n(Q) > 0 is clear.

We can give a lower bound as well. For this we introduce the notion of the topological dimension10

of a set and show that it is a lower bound for dimH. We define it inductively as follows. The empty set
has topological dimension −1. Any other set A ⊂ Cn has topological dimension the smallest integer n
such that for any point in A there are arbitrarily small neighborhoods whose boundary has topological
dimension n− 1 or less. For example, the topological dimension of Cn is 2n.

Proposition 5.4. The Hausdorff dimension is at least as large as the topological dimension.

We base our proof on [10, p. 114].

Proof. The inductive definition of the topological dimension suggests an inductive proof. We claim that
the former is at most n−1 whenever Hn(A) = 0. This suffices since Hn(A) = 0 holds for n = ddimH(A)e,
in particular.
Suppose H0(A) = 0. Since H0 is just the counting measure, A must be empty. Next, assume Hn+1(A) = 0
and x ∈ A. We claim that for almost every r > 0 we have Hn(∂Dr(x) ∩ A) = 0. Once this is shown,
∂Dr(x)∩A has topological dimension at most n−1 by the induction step. Then the topological dimension
of A is at most n by definition. Let us now prove the claim. For any U ⊂ A∫ ∞

0

diam(∂Dr(x) ∩ U)n ≤ sup
r>0

diam(∂Dr(x) ∩ U)n ·
∫ ∞

0

χ{diam(∂Dr(x)∩U)n 6=0}(r) ≤ diam(U)n+1

where we use the upper integral in case the integrand is not measurable. Since Hn+1(A) = 0, for every
integer k there is a cover (U jk)j≥1 of A of sets of diameter at most 2−k satisfying

∑
j≥1

∫ ∞
0

diam(∂Dr(x) ∩ U jk)n ≤
∑
j≥1

diam(U jk)n+1 ≤ 2−k

10This is often called the inductive dimension but in our framework of working with Cn it agrees with the various other
definitions associated with the name topological dimension.
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By Fatou’s lemma about interchanging limits and integrals∫ ∞
0

∑
j≥1

diam(∂Dr(x) ∩ U jk)n ≤ 2−k

Taking the limit k →∞ and using Fatou’s lemma again, we obtain∫ ∞
0

lim
k→∞

∑
j≥1

diam(∂Dr(x) ∩ U jk)n = 0

Hence, for almost every r > 0

lim
k→∞

∑
j≥1

diam(∂Dr(x) ∩ U jk)n = 0

and by definition, this implies Hn(∂Dr(x) ∩A) = 0 for almost every r, as desired.

Mandelbrot used this result to give a precise definition of a fractal. Namely, a fractal is a set whose
Hausdorff dimension is strictly greater than its topological dimension. Since dimH is usually thought of
as a measure for the complexity of a set, this agrees with our intuitive idea of a fractal. As a general rule
of thumb, the larger dimH, the more complex it looks.
In this sense, if the boundary of M had a simple geometry, it would have Hausdorff dimension one (its
topological dimension). However, in this chapter we will see that this is not the case. We will prove
that ∂M has Hausdorff dimension two, that is the largest it could possibly have (being a subset of the
complex plane). Furthermore, we can ask the same question for the Julia sets of pc. The second main
result of this chapter will be that the parameters for which pc has a maximally complex Julia set (that
is a Julia set of Hausdorff dimension two) are dense in ∂M. Let us formally state these claims.

Theorem 5.5 (Fractal 1). If U ⊂ C is open and intersects ∂M, then dimH(U ∩ ∂M) = 2.

Note that we did not just claim dimH(∂M) = 2. What this theorem states is stronger in the sense
that the boundary does not only exhibit a complex geometry in a certain region, but everywhere.

Theorem 5.6 (Fractal 2). The parameters c ∈ ∂M for which the Julia set of pc has Hausdorff dimension
two are dense in ∂M.

To prove these theorems we will rely on Shishikura’s work [24] and expand some of the details. The
first tool we need to introduce is hyperbolicity. Recall the definition of a hyperbolic set.

Definition 5.7. Given a rational map f : C → C, a hyperbolic set for f is a closed set X ⊂ C with
f(X) ⊂ X and

∃C > 0, µ > 1 such that ∀n > 0: |(fn)′| ≥ Cµn on X

Remark 5.8. The reader may note that this is not the standard definition of hyperbolicity. The latter
involves a continuous df -invariant splitting of the tangent bundle of C such that the exterior derivative
of f is contracting on one splitting component and expanding on the other. However, in our framework
each definition translates to the other one: Since C is a complex manifold, the exterior derivative splits
into the ∂ and the ∂ operator (see [4, p. 106]), i.e. d = ∂ + ∂. However, since f is holomorphic ∂f = 0
and so

df = ∂f =
∂f

∂z
dz = f ′ · (dx+ idy)

32



An Introduction to Complex Dynamics and the Mandelbrot Set

where f ′ is the usual complex derivative. Now if v is a tangent vector to C, then we can write v = a ∂
∂x+b ∂∂y

for some real numbers a and b under the usual identification. Then df(z)v = f ′(z) · (a+ ib) and therefore

||df(z)v|| ≥ Cµ||v|| ⇐⇒ |f ′(z)| ≥ Cµ

This means the expansion condition on the splitting is the same as the expansion condition in the above
definition.

We make the first immediate observation.

Proposition 5.9. A hyperbolic set is always a subset of the Julia set.

Proof. We can basically copy the proof of proposition 2.6. If a point x ∈ X was in the Fatou set, then
on a neighborhood of x the family (fn)n≥0 converges on a subsequence (nk)k≥0 uniformly on compacta
to some holomorphic function f . But then we get a contradiction

∞ > |f ′(x)| = | lim
k→∞

(fnk)′(x)| ≥ lim
k→∞

C · µnk =∞

Throughout this chapter keep the following in mind. Hyperbolicity is a rich research area itself.
However, we use hyperbolic sets for only two of their properties. Firstly, they are subsets of the Julia
set, which is what we are interested in. Secondly, we will need the associated persistence result, see [15,
p. 410].

Proposition 5.10 (Persistence of hyperbolic sets). Suppose f : C → C is a holomorphic map of degree
d and X ⊂ C a hyperbolic set for f . Then there exists a neighborhood U of f in the set of holomorphic
functions of the same degree such that any g ∈ U has a hyperbolic set Xg, and there exists a homeomor-
phism hg : X → Xg with hg ◦ f = g ◦ hg on X and hf = idX . Moreover, h(·)(z) : U → C is holomorphic
for any z ∈ X.

That hyperbolic sets are subsets of the Julia set allows us to study the Hausdorff dimension of
hyperbolic sets instead of the one of J . That this really is a sensible approach will become evident
throughout the chapter. To simplify notation let us shortly write

dimhyp(f) = sup{dimH(X) | X is a hyperbolic set for f}

By proposition 5.9 dimhyp(f) ≤ dimH(J(f)) and so dimhyp(f) = 2 implies dimH(J(f)) = 2.
Yet, we need a correlation between the Hausdorff dimension of some hyperbolic set and that of ∂M.

Lemma 5.11. Suppose we are given an open set U ⊂ C intersecting ∂M and a point c0 ∈ U ∩ ∂M.
Consider the family fc(z) = zd + c, c ∈ U . Then

dimhyp(fc0) ≤ dimH(U ∩ ∂M)

This lemma will be proved towards the end of this chapter. We need one more tool to prove the
theorems stated above. This lemma is a highly technical result and for the proof we refer to [24].

Lemma 5.12. If pc(z) = zd+c, c ∈ ∂M, has a parabolic periodic point with eigenvalue 1 (i.e. is the root
of a hyperbolic component), then there exists a sequence (cn)n≥0 ⊂ ∂M with cn → c and dimhyp(pcn)→ 2.

This lemma tells us that for certain systems, the Julia set admits an arbitrarily complex geometry.
All that is left to do is to use lemma 5.11 to translate this result to ∂M. The proofs of the two theorems
are based on the ones in [24, p. 7].
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Proof of Fractal Theorem 1. Let U ⊂ C be open with U ∩∂M 6= ∅. Since roots of hyperbolic components
of M are dense in the boundary (see proposition 3.14), we can pick a point c ∈ U ∩ ∂M that satisfies
the hypothesis of lemma 5.12. Using the first lemma as well, we deduce

dimH(U ∩ ∂M) ≥ dimhyp(pcn)→ 2

The proof of the second theorem is an application of Baire’s theorem.

Proof of Fractal Theorem 2. Define

Rn = {c ∈ ∂M | dimhyp(pc) > 2− 1/n}

Again, we use that roots of hyperbolic components are dense in ∂M. Then, by the second lemma the
sets Rn are dense, too. We claim that each Rn is open in ∂M. If the claim holds, then⋂

n≥1

Rn = {c ∈ ∂M | dimhyp(pc) = 2} = {c ∈ ∂M | dimH(J(pc)) = 2}

is open and dense by Baire’s theorem. Lastly, the claim is proved further below in corollary 5.21.

Remark 5.13. The set {c ∈ ∂M | dimH(J(pc)) = 2} is not just dense, but residual.

For the proof of lemma 5.11 and the claim in the last proof we introduce a new tool.

5.2 Holomorphic Motions

Definition 5.14. Given X ⊂ C and a complex manifold Λ, a holomorphic motion on X parametrized
by Λ with base point λ0 ∈ Λ is a function i : Λ×X → C, which we denote by iλ(z), satisfying

1. iλ0
: X → C is the identity map idX ,

2. ∀λ ∈ Λ: iλ : X → C is injective,
3. ∀z ∈ X : i·(z) : Λ→ C is holomorphic.

Note that there is no regularity assumption on iλ. However, the λ-lemma from the last chapter shows
that a strong regularity property is implicit in the definition. With our new notion we can reformulate
the λ-lemma as follows.

Theorem 5.15 (λ-lemma). Suppose i : D × X → C is a holomorphic motion on X ⊂ C parametrized
by the unit disk D with base point 0. Then there is an extension to a holomorphic motion j on X
parametrized on D, which is jointly continuous and such that each jλ is quasi-conformal.

In fact, Sullivan and Thurston strengthened the λ-lemma in the following way, see [29, p. 244].

Theorem 5.16. Take i, X, and D as in the λ-lemma. Then there exists an a > 0 such that i can be
extended to a holomorphic motion on all of C parametrized by the disk of radius a. Most importantly,
the constant a is universal, i.e. independent of i and X.

By a slight abuse of notation we usually denote the extension by i as well. In this version, quasi-
conformality is not included, but it follows just as in the λ-lemma. In addition, since the constant a is
universal, the quasi-conformality statement can be strengthened alike.

Theorem 5.17. With a denoting the universal constant, there exists a map K : [0, a)→ (0,∞) such that
if i is an extension from the last theorem, then iλ is K(|λ|)-quasi-conformal. Moreover, K(t) → 1 as
t→ 0.
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The proof follows the three similar ones in [17, p. 201-202], [29, p. 2] and [14, p. 96].

Proof. By the λ-lemma, iλ is continuous. We will show that it is quasi-möbius from which quasi-
conformality follows (see the appendix, theorem A.6). Fix a quadruple (z1, z2, z3, z4) of distinct points
in C and set

f(λ) =
iλ(z1)− iλ(z3)

iλ(z1)− iλ(z4)
· iλ(z2)− iλ(z4)

iλ(z4)− iλ(z3)

Note that |f(λ)| is exactly the cross-ratio of the image points of (z1, z2, z3, z4) under iλ, and |f(0)| is the
cross ratio of (z1, z2, z3, z4). Due to injectivity of iλ the map f omits 0, 1 and ∞. Thus, the range of f is
a three punctured sphere, which admits a Poincaré metric ρ. The Schwarz-Ahlfors-Pick theorem11 (see
[22, p. 3]) says that the Poincaré metric is non-increasing under hyperbolic maps, i.e.

ρ(f(λ), f(0)) ≤ ρD(λ, 0)

where ρD denotes the Poincaré metric on the disk Da(0). Next, by completeness of ρ, if ρ(z, w) is bounded
and |z| → 0, then also |w| → 0. Hence, we may pick a family θr : (0,∞) → (0,∞), r > 0, of continuous
functions such that θr depends continuously on r, θr(t) → 0 as t → 0 for each r, and |z| ≤ θr(|w|)
whenever ρ(z, w) < r. With r(λ) = ρD(λ, 0) we get

|f(λ)| ≤ θr(λ)(CR(z1, z2, z3, z4))

where CR() denotes the cross-ratio. This proves that the map iλ is quasi-möbius and therefore, by
theorem A.6, θr(λ)(1)-quasi-conformal for each λ. Furthermore, ρ, ρD, θr and r(λ) are all independent of
f and, hence, also independent of the motion. Lastly, choose K such that for each λ ∈ Da(0) we have
θr(λ)(1) ≤ K(|λ|).

Let us briefly discuss the nature of the proofs to come. We show below that if i is an α-Hölder
continuous map, then

dimH(i(X)) ≤ 1

α
· dimH(X)

Moreover, we know from Mori’s theorem (see the appendix, theorem A.6) that anyK-quasi-conformal map
is 1

K -Hölder continuous. With the λ-lemma and Mori’s theorem we can therefore establish a connection
between dimH(X) and dimH(iλ(X)). In each of the proofs, the key is to find a suitable holomorphic
motion such that X and iλ(X) are the sets in whose Hausdorff dimension we are interested in.

Proposition 5.18. If i : X → C is Hölder continuous, then dimH(i(X)) ≤ 1
α dimH(X).

Proof. Suppose i is Hölder continuous, i.e.

∃C,α > 0 such that ∀x, y ∈ X : |i(x)− i(y)| < C|x− y|α

If U is a cover of X of sets of diameter at most δ, then i(U) is a cover of i(X) of sets of diameter at most
Cδα. Hence,

HCδα

s (i(X)) ≤ inf
U

∑
U∈U

diam(i(U))s ≤ inf
U

∑
U∈U

Csdiam(U)αs = CsHδ
αs(X)

By taking limits, we obtain Hs(i(X)) ≤ CsHαs(X), which implies dimH(i(X)) ≤ 1
α dimH(X).

11Also known as generalized Schwarz lemma or Pick theorem.
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One immediate consequence is the following useful result.

Corollary 5.19. If v : X → C is bi-Lipschitz, then dimH(v−1(X)) = dimH(X) = dimH(v(X)).

To finish the proof of theorem 5.5 we show a continuity result for the Hausdorff dimension. Suppose
f ∈ {zd + c | c ∈ C} and X0 is a hyperbolic set for f . By the persistence of hyperbolic sets, each map g
close to f has a hyperbolic set Xg.

Proposition 5.20. The map g → dimH(Xg) is continuous in a neighborhood of f in the set {zd+ c | c ∈
C}.

The proof given here is an expansion of the one in [24, p. 10].

Proof. Let U and hg be as in the proposition on persistence of hyperbolic sets. Fix g0(z) = zd + c0 ∈ U
and set V = U ∩{zd+c | c ∈ C}. Then V is a one-complex dimensional manifold, which can be embedded
in C, and by replacing V with a disk Dr(g0) ⊂ V and making an affine coordinate change, we may assume
that V is the unit disk D and g0 corresponds to the origin. For simplicity, we still write g for an element
of D. This way,

i : D ×X → C, ig(z) = hg ◦ h−1
g0 (z)

is a holomorphic motion on X = Xg0 parametrized by D with base point 0 ' g0. By theorem 5.17 each
ig has a K(|g|)-quasi-conformal extension. If we set α(g) = 1/K(|g|), then Xg = ig(X) is the image of
X under an α(g)-Hölder continuous map.
Now fix a point g1 close to g0 and let Dg1 denote the disk {g1 +z | |z| < ε} ⊂ D with ε such that g0 ∈ Dg1 .
Let wg1 : D → Dg1 , w(z) = εz + g1 be the affine coordinate change of Dg1 to the unit disk. Then

j : D ×Xg1 → C, jg(z) = hwg1 (g) ◦ h−1
g1 (z)

is a holomorphic motion on Xg1 parametrized by the unit disk with base point 0. By the same reasoning
as before, X = jw−1

g1
(g0)(Xg1) is the image of Xg1 under an α(w−1

g1 (g0))-Hölder continuous map. Here we

use that the map K in theorem 5.17 is independent of the motion, but at the same time we needed to
make the affine coordinate change to accommodate that the two motions have different base points g0

and g1. Recall our identification 0 ' g0 and observe that w−1
g1 (g0) = −g1

ε is close to 0 whenever g1 is.
Since α(g)→ 1 as g → 0, given any 0 < α < 1, for all g1 sufficiently close to g0 ' 0 we have α < α(g1) < 1
as well as α < α(w−1

g1 (g0)) < 1. By Hölder continuity

α · dimH(X) ≤ dimH(Xg) ≤
1

α
· dimH(X)

We can conclude continuity of dimH(Xg).

Now, we can easily deduce the claim from the proof of the first main theorem.

Corollary 5.21 (Completion of the proof of theorem 5.6). The set {c ∈ ∂M | dimhyp(pc) > 2− 1/n} is
open in ∂M.

Proof. By definition

dimhyp(f) = sup{dimH(X) | X is a hyperbolic set for f}

and since g → dimH(Xg) is continuous in {zd+c | c ∈ C}, the map f → dimhyp(f) is lower semi-continuous
in {zd + c | c ∈ C}.

36



An Introduction to Complex Dynamics and the Mandelbrot Set

In order to prove lemma 5.11 we need two more technical results. The first is a generic statement
about the Hausdorff dimension.

Lemma 5.22. Given a compact subset X ⊂ C, there exists a point z0 ∈ X such that

lim
r→0

dimH(X ∩Dr(z0)) = dimH(X)

Proof. Suppose for contradiction it is not true, i.e.

∀z ∈ X ∃εz > 0 ∃(nz,k)k≥0 ⊂ N ∀k : dimH(X ∩D 1
nz,k

(z)) < dimH(X)− εz

By compactness of X, we can pick points z1, . . . , zN such that

X =
⋃

1≤j≤N

X ∩Drj (zj)

where rj is short for 1
nzj,1

. It follows readily from the construction of the Hausdorff dimension that a

union turns into a supremum.

dimH(
⋃

1≤j≤n

X ∩Drj (zj)) = sup
1≤j≤n

dimH(X ∩Drj (zj)) < dimH(X)− min
1≤j≤N

εzj < dimH(X)

This is a contradiction.

This second result is the key to how we later link the Hausdorff dimension of ∂M to the one of some
hyperbolic set.

Lemma 5.23. Suppose iλ : X → C is a holomorphic motion parametrized by the unit disk D with base
point 0, and v : D → C is a holomorphic map with v(0) = z0 ∈ X and v(λ) 6≡ iλ(z0). Then

lim
r→0

dimH(X ∩Dr(z0)) ≤ dimH({λ ∈ D | v(λ) ∈ iλ(X)}

This time, we will first need to work a bit to discover the holormophic motion that we want to apply
the technique discussed earlier to. It will contain the information “v(λ) ∈ iλ(X)”. In order to construct
this holomorphic motion we will rewrite “v(λ) ∈ iλ(X)” as a root finding problem. We follow [24, p. 10-11]
closely.

Proof. For simplicity we would like to have z0 = 0 and iλ(0) = 0 for all λ. Let us briefly check that we
may assume this without loss of generality. We make a change of coordinates as follows. Let φλ be Möbius
transformations depending analytically on λ such that φλ(iλ(z0)) = 0 for all λ. Set i′λ(z) = φλ◦iλ◦φ−1

0 (z)
and w(λ) = φλ(v(λ)). Then, i′λ(0) = 0 and

w(λ) ∈ i′λ(φ0(X)) ⇐⇒ v(λ) ∈ iλ(X)

Moreover,

lim
r→0

dimH(φ0(X) ∩Dr(φ0(z0))) = lim
r→0

dimH(X ∩Dr(z0))

as φ0 is bi-lipschitz. From this change of coordinates it follows that it suffices to prove the lemma with
the additional assumption that z0 = 0 and iλ(0) = 0 for all λ. We now drop the w and i′ notation.
Suppose first that the derivative of v does not vanish at 0. We want to reduce the problem of finding λ
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for which v(λ) ∈ iλ(X) to a root finding problem. Since v′(0) 6= 0 there exists a > 0 and 0 < ρ < 1 such
that on Dρ(0) v is injective and |v(λ)| ≥ a|λ|. Define

br = sup{|iλ(z)| | z ∈ X ∩Dr(0), |λ| ≤ ρ}

By the λ-lemma, i has a continuous extension and so br → 0 as r → 0. Thus, we can take r0 with br < aρ
for 0 < r < r0. Fix 0 < r < r0, z ∈ X ∩Dr(0) and µ ∈ D aρ

br
(0). Set ∆µ = {λ | |λ| < min(ρ, ρ

|µ| )} and

consider the root finding problem

v(λ)− iλµ(z) = 0

in ∆µ. On ∂∆µ we have |iλµ(z)| ≤ br by definition of br, and br < |v(λ)| because |v(λ)| ≥ a|λ|, br < aρ
and |µ| < aρ

br
. Since v(0) = 0 and v is injective on ∆µ, this equation has a unique solution λ(µ, z) by

Rouché’s theorem12. Moreover, λ(µ, ·) is injective since iλµ is, and λ(µ, z) depends analytically on µ since
iλµ(z) does.

Next, define

j : D × v−1(X ∩Dr(0))→ C, jµ(z) = λ(
aρ

br
µ, v(z))

This is a holomorphic motion on v−1(X ∩Dr(0)) parametrized by the unit disk with base point 0. We
check that it satisfies our needs: We have

v(λ(1, z)) = iλ(1,z)(z) ∈ iλ(1,z)(X)

and therefore

j br
aρ

(v−1(X ∩Dr(0))) = {λ(1, v(z)) | z ∈ v−1(X ∩Dr(0))} ⊂ {λ ∈ D | v(λ) ∈ iλ(X)}

As in the proof of proposition 5.20, each jµ is α(µ)-Hölder continuous, where α is a function that tends
to 1 as µ → 0. Also note that jλ is a homeomoprhism onto its image as X is compact. Now we make
extensive use that the quasi-conformal extension of j in the improved λ-lemma is defined on all of C.
Namely, these last two conditions allow us to apply theorem A.4, which tells us that also the inverse
functions jλ are quasi-conformal (even though this might not be a holomorphic motion itself). Moreover,
the dilatation is the same. Hence, the inverse maps are also Hölder continuous with the same exponent,
and we get

α(
br
aρ

) dimH(v−1(X ∩Dr(0))) ≤ dimH({λ ∈ D | v(λ) ∈ iλ(X)})

Lastly, observe that

dimH(v−1(X ∩Dr(0))) = dimH(X ∩Dr(0))

as v is bi-Lipschitz and let r → 0.
Suppose now v′(0) = 0 and that this root has order m. After the coordinate change done in the beginning,
we have v 6≡ 0 by hypothesis. Moreover, in that coordinate change we could as well have taken Möbius
transformations so that we may assume ∞ ∈ X and iλ(∞) = ∞. Define G(z) = zm and let w : D → C

12Rouché’s theorem states that if f and g are two functions that are holomorphic in K, where K is a bounded set with
continuous boundary, and satisfy |g| < |f | on ∂K, then f and f + g have the same number of roots inside K. Here we apply
it with f = v and g = −i·µ(z).
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and i′λ : G−1(X) → C denote lifts of v and iλ with respect to G, i.e. v = G ◦ w and iλ ◦ G = G ◦ i′λ for
all λ in D. Applying the first step to w and i′ we get

lim
r→0

dimH(G−1(X) ∩Dr(0)) ≤ dimH({λ ∈ D | w(λ) ∈ i′λ(G−1(X))}

We conclude using

w(λ) ∈ i′λ(G−1(X)) ⇐⇒ v(λ) ∈ iλ(X)

and that G is bi-Lipschitz.

Finally, we can prove lemma 5.11. Recall that we want to show the inequality

dimhyp(fc0) ≤ dimH(U ∩ ∂M)

We slightly modify the proof in [24, p. 11-12] with an addition from [16, p. 238]. The idea is to construct
a function v such that the condition “v(λ) ∈ iλ(X)” in the last lemma actually reads something like
“c ∈ U ∩ ∂M”. The assertion then follows easily.

Proof of Lemma 5.11. By definition, given any ε > 0 there is a hyperbolic set X for f = fc0 with

dimH(X) > dimhyp(f)− ε

By the persistence of hyperbolic sets, there is a neighborhood U ′ ⊂ U of c0, there are hyperbolic sets Xc

for fc, and a holomorphic motion h : U ′ ×X → C on X with hc ◦ f = fc ◦ hc. Let z0 be the point given
by lemma 5.22. By proposition 5.20 we may assume that

∀c ∈ U ′ : lim
r→0

dimH(Xc ∩Dr(hc(z0))) > dimH(X)− ε

after shrinking U ′ if necessary. To apply the previous lemma we need to find a suitable function v.
Lemma III.2 in [17, p. 204] yields a c1 ∈ U ′, an N > 0, and a critical point ω of fc1 such that fNc1 (ω) =
hc1(z0) ∈ Xc1

13. Since every fc is of the form zd + c, this critical point is, in fact, the origin (∞, being a
fixed point, is excluded since hyperbolic sets obviously cannot contain critical points).

To apply the above lemma we need to make an affine coordinate change from U ′ to the unit disk.
Take a small s > 0 such that U ′′ = {sλ+ c1 | λ ∈ D} ⊂ U ′ and set

v(λ) = fNsλ+c1(0) , iλ(z) = hsλ+c1 ◦ h−1
c1 (z)

Note that the condition v(λ) = iλ(hc1(z0)) would imply that Orbfsλ+c1 (0) eventually enters the Julia set

of fsλ+c1 as of proposition 5.9. Since U ′′ intersects ∂M14, there are points for which this is not the case
(for example, we can employ proposition 3.13). Hence, the requirement v(λ) 6≡ iλ(hc1(z0)) is fulfilled.
The lemma yields

dimhyp(f)− 2ε < lim
r→0

dimH(Xc1 ∩Dr(hc1(z0))) ≤

dimH({λ ∈ D | v(λ) ∈ iλ(Xc1)}) ≤ dimH({c ∈ U ′′ | fNc (0) ∈ Xc})
13In the notation of lemma III.2 in [17, p. 204] we use W0 = U ′ and φ(w) = hw(z0). Then

fNw (φ(w)) = hw(fNc0 (z0))

shows that if one φ(w) is periodic, then all φ(w) are periodic under fw, i.e. the hypothesis of the lemma are satisfied.
However, since U ′ meets ∂M and no point in U ′ ∩ ∂M is persistently non-hyperbolic as of theorem B in [17, p. 199], H(f)
cannot contain all of W0, i.e. lemma III.2 cannot hold. Thus, the hypothesis of lemma III.1 in [17, p. 204] must be violated.
This yields the c1, ω and N as desired.
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To complete the proof, we show that {c ∈ U ′′ | fNc (0) ∈ Xc} is a subset of U ′′ ∩ ∂M. Let c2 ∈
{c ∈ U ′′ | fNc (0) ∈ Xc}. Note that if Orbfc2 (0) enters the Julia set of fc2 , then c2 ∈ ∂M or c2 is in a
non-hyperbolic component. Suppose for contradiction it was in a non-hyperbolic component. Then the
critical value 0 lies in the Julia set by a similar argument as before, involving the Sullivan classification.
It is shown in [17, p. 199] that for parameters in C \ ∂M, the Julia set moves continuously15 with the
parameter. In particular, for any compact neighborhood K of c2 in its non-hyperbolic component, fnc (0)
remains bounded away from ∞ for any c ∈ K. Thus, the proof of the lemma follows from the following
claim: fNc2 (0) ∈ Xc2 implies that (fnc2(0)){c close to c2} is not a normal family.
Let r > 0 be so that the disk around c2 of radius r is contained inside U ′′. For notational convenience,
define z1 = fNc2 (0) ∈ Xc2 , z2 = h−1

c2 (z1) ∈ X and also new functions

a(λ) = fNrλ+c2(0) and b(λ) = hrλ+c2(z2)

Note that a(0) = b(0). Furthermore, we claim that a(λ) 6≡ b(λ) on D. Suppose this was not true. As
Dr(c2) is a disk inside U ′′, the identity principle tells us that fNsλ+c1

(0) ≡ hsλ+c1(z′) on U ′′ for some z′.

But since fNc1 (0) = hc1(z0) and hc1 is injective, we must have z′ = z0, which contradicts v(λ) 6≡ hsλ+c1(z0).
Therefore, a(λ) 6≡ b(λ) on D. Let p be the order of the zero of a(λ)− b(λ) at 0 so that

a(λ)− b(λ) = tλp +O(λp+1)

for some t ∈ C. We will prove the following statement by induction:

fnrλ+c2(a(λ))− fnrλ+c2(b(λ)) = (fnc2)′(z1) · tλp +O(λp+1)

To show the induction step, note that expanding fλ(z) into its power series with respect to z and λ at
the same time yields

fλ(z) = fλ0(z′) +
( ∂
∂λ

∣∣∣∣∣
λ=λ0

fλ

)
(z′) · (λ− λ0) + f ′λ0

(z′) · (z − z′)

+
( ∂
∂λ

∣∣∣∣∣
λ=λ0

f ′λ

)
(z′) · (z − z′) · (λ− λ0) +O(z − z′)2 +O(λ− λ0)2

In our case ( ∂
∂λ

∣∣∣∣∣
λ=0

frλ+c2

)
(z) = r and

( ∂
∂λ

∣∣∣∣∣
λ=0

f ′rλ+c2

)
(z) = 0

Expanding around zn = fnc2(z1) we get

frλ+c2

(
fnrλ+c2(a(λ))

)
− frλ+c2

(
fnrλ+c2(b(λ))

)
= f ′c2(zn) ·

(
fnrλ+c2(a(λ))− fnrλ+c2(b(λ))

)
Using the induction hypothesis together with the fact

(fn+1)′(z) = f ′(fn(z)) · (fn)′(z)

finishes the induction step. Unraveling the definition of b(λ) and c(λ), we have just shown that

fn+N
rλ+c2

(0)− hrλ+c2 ◦ fn(z2) = (fnc2)′(z1) · tλp +O(λp+1)

14Technically, we should have been more careful to ensure that U ′′ does indeed intersect ∂M. However, this is done easily
by first shrinking U ′ a lot, picking c1 in the shrunken set, and then taking a disk around c1 in the original U ′.

15In the Hausdorff metric.

40



An Introduction to Complex Dynamics and the Mandelbrot Set

Now we take the derivative ∂p

∂λp on both sides. Clearly, the term

∂p

∂λp
hrλ+c2 ◦ fn(z2)

is bounded in n close to λ = 0 since its maximal value only depends on hrλ+c2 . The right hand side

∂p

∂λp

(
(fnc2)′(z1) · tλp +O(λp+1)

)
= (fnc2)′(z1) · p!t+O(λ)

diverges to ∞ because z1 ∈ Xc2 and by definition of a hyperbolic set |(fnc2)′(z1)| → ∞ as n → ∞.

Therefore, fn+N
rλ+c2

(0) is unbounded close to λ = 0, hence not a normal family.

Now that lemma 5.11 is shown, the proof of the two fractal theorems is complete. We have successfully
justified calling the Mandelbrot set a fractal.
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A Preliminaries on Quasi-conformal Maps

For quasi-conformality we use the definition given by Mañé, Sad and Sullivan in [17, p. 199].

Definition A.1. A map f : X → Y , where X and Y denote two subsets of C, is K-quasi-conformal if

sup
x∈X

lim sup
t→0

supy∈∂Bt(x) d(f(x), f(y))

infz∈∂Bt(x) d(f(x), f(z))
≤ K

Furthermore, we require a K-quasi-conformal map to be continuous and injective. A map is quasi-
conformal if it is K-quasi-conformal for some K <∞. The number K is called dilatation of f.

In the chapter on the Hausdorff dimension of ∂M we use a connection between quasi-conformality
and Hölder continuity. It is proved in [1, p. 30] under the name of Mori’s theorem.

Theorem A.2. A K-quasi-conformal map is 1
K -Hölder continuous.

This corollary we use several times in the last chapter.

Corollary A.3. Where a holomorphic map has non zero derivative it is bi-Lipschitz.

Proof. A holomorphic map is conformal, i.e. 1-quasi-conformal, when its derivative does not vanish.
Moreover, whenever its derivative does not vanish it has a holomorphic inverse.

Under sufficient conditions, quasi-conformality of a map is enough for quasi-conformality of its inverse,
see [12, p. 5].

Theorem A.4. If f is defined on a domain and is a homeomorphism onto its image, then the inverse
is also quasi-conformal and has the same dilatation as f .

Sometimes it is convenient to check a map for a stronger notion than quasi-conformality. In [30], so
called quasi-möbius maps are introduced. In the original paper, these maps are considered on arbitrary,
one-point extended, metric spaces, but we will restrict ourselves to the Riemann sphere.

Definition A.5. Suppose A ⊂ C is a subset, θ : [0,∞) → [0,∞) is a homeomorphism and f : A → C
is continuous and injective. We say f is θ-quasi-möbius if for any quadruple (z1, z2, z3, z4) of distinct
points in A

CR(f(z1), f(z2), f(z3), f(z4)) ≤ θ(CR(z1, z2, z3, z4))

where CR() denotes the cross-ratio of four points. Naturally, f is said to be quasi-möbius if there exists
some homeomorphism θ such that f is θ-quasi-möbius.

It is proved in [30, p. 231] that this notion is indeed stronger than quasi-conformality.

Theorem A.6. Suppose A ⊂ C and f : A → C is θ-quasi-möbius. Then f is quasi-conformal and the
dilatation of f is bounded by θ(1).
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Sup. (4) 16, 2 (1983), 193–217.

[18] McMullen, C. T., and Sullivan, D. P. Quasiconformal homeomorphisms and dynamics. III.
The Teichmüller space of a holomorphic dynamical system. Adv. Math. 135, 2 (1998), 351–395.

[19] Milnor, J. Dynamics in one complex variable. Springer, 2000. Introductory lectures.

43



An Introduction to Complex Dynamics and the Mandelbrot Set

[20] Milnor, J. Local connectivity of Julia sets: expository lectures. In The Mandelbrot set, theme and
variations, vol. 274 of London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge,
2000, pp. 67–116.

[21] Milnor, J. Periodic orbits, externals rays and the Mandelbrot set: an expository account.
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